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Commentary

Clinical veterinary research often uses statistical
methods to investigate whether one factor (eg, an

agent, method, or treatment) alters an outcome.
Therefore, it is common for researchers to report that
one treatment resulted in a significantly greater number
of animals surviving than another treatment or no treat-
ment. If the study is correctly designed and the statisti-
cal analyses are conducted appropriately, this is a per-
fectly legitimate claim. However, problems may arise
when researchers report results that are not significant-
ly different. By convention, the significance level is set
at 5%, and a P value > 0.05 is termed not significant.1 In
these circumstances, it is tempting to report that one
factor is comparable to, equivalent with, or not different
from the second factor. The implication, either implicit
or explicit, is that the factors being considered are the
same or have the same effects. Actually, all that has been
demonstrated is an absence of evidence of a difference.1

These statements are quite different, and concluding
that two factors that are not significantly different are
comparable could lead to erroneous conclusions in rela-
tion to the research question. If we believe that two
treatments are not going to result in exactly the same
response, the correct question is whether or not the dif-
ference between the treatments is sufficiently small
enough that they could be used interchangeably.

Commonly, nonsignificant differences are inter-
preted as indicating equivalence. A review2 of medical
literature revealed that the conclusions of 67% of stud-
ies claiming clinical or therapeutic equivalency were
based on a failure to detect significant differences. Only
23% of studies confirmed equivalence with appropriate
statistical testing, and 10% performed no statistical
analysis. There are numerous examples in the veteri-
nary literature of equivalence of two factors being based
on lack of a significant difference. When conclusions
are based on the inability to reject the null hypothesis

of no significant difference, such conclusions may be
erroneous, particularly when the sample size is small.
Such results are also not very informative. Therefore,
when the purpose of a study is to determine that two
sets of results are equivalent, useful, yet similar, ques-
tions are: is there evidence in the data that the results
are equivalent, and, given that the two groups of results
are unlikely to be identical, is the difference sufficiently
small to be considered negligible?

Statistical methods3-8 to provide evidence for equiv-
alence between different treatments, methods, or other
factors have been described. Primarily, these have been
developed for the pharmaceutical industry to demon-
strate that a new formulation of a drug is equivalent to
an existing formulation. Initially, concern was limited
to detecting average or typical equivalence; that is,
determining whether the typical effect of two or more
drugs is similar across a population. However, recently
this concept has been disaggregated to equivalence at
the level of the population and the individual.9,10

Several approaches may be used to investigate equiv-
alence or test for the degree of similarity. These include
hypothesis testing, confidence intervals, and graphic
means. However, such methods are rarely used in veteri-
nary clinical research and may seem daunting to
researchers without a background in statistics. The pur-
pose of this commentary is to illustrate some of these
methods with examples from the veterinary clinical liter-
ature. It is important to note that we are not suggesting
in any instance that the original authors intended to mis-
lead. Rather, our intention is to show that the use of alter-
native statistical methods might allow a more detailed
interpretation of the results; indeed, we are grateful to the
authors of the articles we have selected for publishing
their studies in sufficient detail to allow further analysis.

Selection of Research Articles
Articles were selected by review of recent issues of

several journals that publish veterinary clinical
research. The search procedures were unstructured and
not exhaustive. The objective was to identify research
articles in which important conclusions had been made
on the basis of nonsignificant differences detected by
use of standard statistical procedures. In particular, arti-
cles in which sufficient data were presented to enable
reanalysis, using the methods of interest, were sought.
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Statistical Methods
Published methods of performing equivalence

testing were used. These included plotting the mean
versus the difference of two measures,8,11 the two one-
sided tests for normally distributed data,5 and the
Hauck-Anderson corrected two one-sided tests for pro-
portions.12 These were performed with a spreadsheet
program.a The programming was cross-checked for
errors via manual calculation and by comparison with
published results. Some of the spreadsheets are avail-
able at www.vie.gla.ac.uk/equivalence/. The formulae
used were listed (Appendices 1 and 2).

Determining Equivalence of Two Tests 
or Observers

Studies are often designed to investigate whether
results obtained from two instruments or observers
agree sufficiently to be used interchangeably. Methods
that have been used include paired t tests,13 correlation
coefficients,14 and plotting the difference between the
methods against the standard method.15 Although each
of these methods may have a role in the interpretation
of the results, incorrect interpretation may be mislead-
ing.11,16 For example, evidence of a clinically important
statistical difference detected by use of a paired t-test or
a small correlation coefficient provides evidence
against equivalence. However, a large correlation coef-
ficient or the absence of a significant difference does
not provide sufficient evidence to claim equivalence.
An appropriate method to provide evidence for equiv-
alence for each pair of data has been suggested by
Bland and Altman8,11,16 and involves plotting the differ-
ence between results obtained by these methods
against the mean of the results of the methods.

As an example, consider a comparison of lameness
ratings in sheep by two observers.13 For each of 45
sheep, the two observers rated the degree of lameness
with a visual analogue scale (VAS), which scored the
lameness from 0 (no lameness) to 100 (could not be
more lame). In addition to using descriptive statistics,
the authors concluded that lameness score obtained
with the VAS was reproducible because of failure to
identify a significant difference between the observers
with a paired t test (our calculation, P = 0.8), essential-
ly comparing the mean of the differences against zero. 

Another approach would be to plot the results of
one observer against the other (Fig 1) and calculate the
correlation coefficient (r = 0.92; P < 0.001). However,

this high correlation does not mean the two methods
agree.16 The correlation coefficient measures the
strength of the relationship between the two sets of
observations, not the agreement between them. In other
words, there will be a perfect correlation if the points lie
along any straight line, even if they were measured on
different scales. For example, halving the results of
observer 2 does not alter the correlation coefficient. 

Bland and Altman11 recommend an alternative
method for the analysis of such data, which is based on
simple graphic techniques and elementary calcula-
tions. Their approach involves plotting the difference
between each pair of observations against the mean of
that pair of observations. If the measurements made by
each observer are exactly equivalent, the data points
should lie along the line of zero difference, regardless
of the mean measurement. When applied to the lame-
ness data (Fig 2), there is evidence of considerable lack
of agreement between the two observers with discrep-
ancies of up to 25 units. Although inspection of Figure
1 suggests there are discrepancies between the meth-
ods, Figure 2 clearly illustrates the magnitude of these
differences. The lack of agreement can further be sum-
marized by calculating the 95% limits of agreement.
For the VAS data, the mean difference between
observers is –0.4, and SD is 11.4. We would expect that
95% of observations would lie between 0.4 – 1.96 SD
and 0.4 + 1.96 SD (ie, the limits of agreement), assum-
ing that the differences follow a normal distribution. In
fact, the differences are likely to follow a normal distri-
bution, because we have removed much of the varia-
tion between subjects and are left with the measure-
ment error. The measurements themselves do not need
to follow a normal distribution, and often they will not.

Provided that the differences within the limits of
agreement were not clinically important, the observa-
tions by the two observers could be used interchange-
ably. For the VAS data, the limits of agreement are
–22.7 to 21.9. Therefore, one observer may assign
scores that are 23 units less than or 22 units greater
than those assigned by the other observer. Whether
such a range of difference (45 units) is important is a
clinical, rather than statistical, question. However, the
limits of agreement suggest a lack of agreement that is
not immediately obvious from the correlation coeffi-
cients or Figure 1. 

This method is more informative than reporting
no significant difference on the basis of a paired t test.

Figure 1—Correlation between two observers’ measurements
of lameness scores with a visual analogue scale in 45 sheep.13

Solid line indicates the line of equality.

Figure 2—Difference versus mean of each pair of values for lame-
ness in sheep measured by two observers with a visual analogue
scale, with 95% limits of agreement13 (upper and lower dotted lines). 
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The limits of agreement indicate the spread of the data.
If the authors or readers believe that these limits are
not excessively wide, equivalence can be the conclu-
sion. The plot of the difference against the mean also
provides information regarding the nature of the rela-
tionship between the observations. In this example, the
relationship appears reasonably uniform. However, in
other instances, we may observe a nonuniform rela-
tionship, with the difference increasing or decreasing
as the mean increases. In addition, if the difference
between the observers was considerably different from
zero, there is likely to be measurement bias between
the observers. If this bias is consistent, it is a simple
matter to adjust for it by subtracting the mean differ-
ence from the measurements made by the second
observer. This is not a problem in this example.

Extensions of this method are available for data in
which the relationship between the difference and the
mean difference is not uniform, in which there are
repeated measurements, and in which the differences
do not have a normal distribution.8

Detecting Equivalence of Outcomes 
after Two Interventions

Proportions—Many studies investigate the effect
of an intervention (such as drug administration or
surgery) by measuring a clinical outcome. Often, the
results are in the form of proportions; for example, the
proportion of animals that recovered or survived. It
may be of interest to determine whether the interven-
tion does not alter the likely outcome, compared with
a reference group. Several comparisons may be made in
order to analyze such data; the difference in success
probabilities is usually considered, although the ratio
of the proportions (relative risk) and the odds of the
rates of the outcome have also been used.3,6,12,17,18

Because of problems with the specification of the
acceptance interval, the use of relative risk is not rec-
ommended.18 Similarly, the use of the odds ratio is not
widely reported and may be undesirably conservative.18

Therefore, when appropriate, using the difference in
probabilities is recommended.

Several methods for assessing equivalence on the
basis of the difference in probabilities are avail-
able.3,6,12,17,19-21 These differ in relation to the calculation
of the SD, correction factor, or both. Despite resulting
in some loss in statistical power, the Hauck-Anderson
corrected classical procedure has been recommend-
ed12,17 (Appendix 1). 

This procedure can be used in two ways. First, it
can be used to test the hypotheses of equivalence
between two proportions, and, second, it can be used
to create confidence intervals of the difference between
the proportions. We believe that the confidence inter-
val approach is more intuitive and informative.

In a study of the effects of early gonadectomy (pre-
pubertal [prior to 24 weeks of age]) in cats, one of the
outcomes of interests was the rate of behavioral prob-
lems.22 Of 75 cats that underwent traditional-age
gonadectomy, 26 (35%) developed behavioral abnor-
malities. In contrast, 49 of 188 (26%) cats that under-
went prepubertal gonadectomy developed behavioral
problems. The authors correctly concluded that there

was no significant difference between the rates of
behavioral problems in these groups (our calculations,
P = 0.2). The authors suggest that “prepubertal
gonadectomy may be performed safely in cats without
concern for increased incidence of …behavioral prob-
lems.” However, the finding of lack of significant dif-
ference does not mean the proportion of animals with
behavioral problems is the same in each group. 

From the information presented in the article, fur-
ther hypotheses about the effect of early gonadectomy
can be investigated. For example, we could consider
whether the difference between the probabilities of
behavioral problems is greater than or less than speci-
fied lower and upper limits, respectively. That is,

H0 : PT – PR ≤ θ1 or PT – PR ≥ θ2 versus H1 : θ1 < PT – PR < θ2

where PT and PR are proportion of behavioral problems
in the treatment (ie, early gonadectomy) group and ref-
erence group, respectively, θ1 and θ2 are the prespecified
lower and upper limits for equivalence, and θ1 < 0 < θ2.
This can be rewritten as two one-sided hypotheses

H01 : PT – PR ≤ θ1 versus H11 : PT – PR > θ1
H02 : PT – PR ≥ θ2 versus H12 : PT – PR < θ2

We could then investigate whether the study pro-
vides evidence of equivalent rates of behavioral prob-
lems, given the prespecified limits. If we reject both of
the null hypotheses, we can conclude that the propor-
tions are equivalent, within the acceptance limits θ1
and θ2. In this example, if the only concern was to
determine that early gonadectomy did not increase
behavioral abnormalities, we could just consider H02,
that early gonadectomy does not increase the rate of
behavioral abnormalities by more than θ2. However, it
may also be of interest to investigate whether early
gonadectomy decreases the rate of behavioral problems
by θ1, so H01 is also considered here. Note also that
asymmetric limits can be used (eg, –0.1 and 0.3), but
for simplicity, symmetric limits will be used in the fol-
lowing example.

Let us assume that a group of experts conclude
that, because early gonadectomy is an important means
to control the companion animal overpopulation prob-
lem, a difference in the rate of behavioral problems of
0.2 (20%) would be acceptable. Using the Hauck-
Anderson corrected classical method (Appendix 1),12

the P value for H01 is 0.047 and for H02 is < 0.001.
Therefore, we can conclude that, within the acceptance
limits, the proportions are equivalent.

However, expert opinion often differs. For exam-
ple, other experts reading the article might believe that,
because behavioral problems are a major cause of ani-
mals being surrendered to animal shelters,23 increasing
the rate of behavioral problems by 20% may be unac-
ceptable. Hence, these experts may be unsatisfied with
the conclusions of the article. Determination of the
confidence interval for the difference between the pro-
portions removes the specification of the equivalence
limits and enables estimation of the interval within
which the true difference is likely to be. In this way,
readers can determine whether or not they consider
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the maximum differences, in either direction, to be suf-
ficiently small to consider the proportions equivalent.
In this example, the 90% confidence interval is –0.2 to
0.03. Hence, rather than merely concluding that the
result was not significant, we could conclude that early
gonadectomy does not increase the incidence of behav-
ioral problems by more that 3% and may actually
decrease it by as much as 20% (90% confidence inter-
val). In this way, there is no need to consider whether
the proportions are equivalent, just whether the range
of possible differences would be acceptable. We do rec-
ommend, however, that such considerations be made
prior to analysis. 

Continuous data—Frequently, studies are designed
to determine the equivalence of interventions, in terms
of a continuous outcome (such as a physiologic or bio-
chemical parameter or serum concentrations of a drug).
As with proportional data, several methods are available
to investigate such equivalence, including hypothesis
testing and the use of confidence intervals (limits of
agreement). The hypothesis testing approach involves
construction of a null hypothesis that the difference
between the means is within a certain small range5

(Appendix 2). That is, 

H0 : µT – µR ≤ δ1 or µT – µR ≥ δ2 versus H1 : δ1 < µT – µR < δ2

where δ1 and δ2 are the prespecified lower and upper
limits, respectively. Once again, this can be rewritten as
two one-sided hypotheses

H01 : µT – µR ≤ δ1 versus H11 : µT – µR > δ1
and 

H02 : µT – µR ≥ δ2 versus H1 : µT – µR < δ2

The procedure for testing these hypotheses involves
two one-sided tests (one for each component of the null
hypothesis).5 Detection of a sufficiently small P value
(usually P < 0.05) for each of these tests would allow
rejection of the null hypothesis and the conclusion that
the difference between the means is between δ1 and δ2.

As an example, Ko et al24 investigated the effect
of carprofen on the glomerular filtration rates
(GFR) of healthy dogs after anesthesia and conclud-
ed that there was no significant difference from
baseline values. This conclusion is statistically cor-
rect. However, because only five dogs were assigned
to each of the treatment and reference groups, there
may be concern about the statistical power of the
study to detect a difference, if present. The study
design allowed several comparisons, including treat-
ment versus control after the first anesthesia (ie, no
intervention to either group), treatment versus con-
trol after the second anesthesia (ie, effect of carpro-
fen compared with control), treatment group com-
pared after first and second anesthesia (paired com-
parison of treatment effect), and control group after
first and second anesthesia (paired comparison of
control effect). The authors correctly used ANOVA
with posthoc tests to make these comparisons.
Multiple testing procedures to declare equivalence
are reported in the literature but are outside the
scope of this commentary.

In the study by Ko et al,24 mean ± SD GFR values
were 2.16 ± 0.45 and 1.98 ± 0.83 mL/kg/h for the treat-
ment and control groups, respectively. Therefore, the
pooled SD is 0.67.25 With this information, we can
investigate whether the difference between the means
of the control and treatment groups is within certain
limits. We could consider that carprofen should not
alter the GFR by > 30% of the control value. That is, δ1
and δ2 equal –0.6 mL/kg/h and 0.6 mL/kg/h, respec-
tively. Testing these hypotheses indicates that carpro-
fen is unlikely to reduce GFR by 30% (P = 0.03), but
we cannot conclude that it does not increase GFR by
30% (P = 0.2).

Alternatively, we could calculate the maximum
values of δ1 and δ2 that would occur with P = 0.05. In
the carprofen example, the lower and upper limits of
the difference between the means are –0.51 mL/kg/h
and 1.24 mL/kg/h, respectively. Therefore, although it
appears that, if anything, carprofen increased GFR (by
as much as 1.24 mL/kg/h; ie, 63% greater than the con-
trol mean), the results of the study indicate that
carprofen could reduce GFR by as much as 0.51
mL/kg/h (a 26% decrease from control values). The
question now is whether decreasing GFR by one-quar-
ter or increasing it by two-thirds is of clinical concern.
If either of these is potentially important, then it can-
not be concluded that carprofen does not affect GFR to
an important degree, and further study, possibly with
increased sample size, is warranted. 

Conclusions
We have illustrated some of the analytic methods

available for providing evidence that two factors are
equivalent. These methods include graphic and quan-
titative approaches. The methods have advantages
over standard statistical procedures, because they
allow a conclusion of equivalence (within specified
limits) rather than simply a lack of significant differ-
ence and are, therefore, less open to misinterpretation.
In addition, they can be used to determine a confi-
dence interval for the difference between groups. Such
approaches should be considered when the hypothesis
is of no difference or when no significant difference is
detected.

One useful aspect of the hypothesis testing and
confidence interval approaches for normally and bino-
mially distributed data is that they can be applied ret-
rospectively, using details typically provided in pub-
lished articles. For normally distributed continuous
data, information regarding mean, variance (or SD),
and number of animals is required. For binomial data,
the number of animals with and without the outcome
in the treatment and reference groups is required.
However, these methods are only appropriate for cer-
tain study designs; many other analytic techniques are
available for other types of studies. The methods
reported here are simple, whereas other methods may
be considerably more complex. Advice from a statisti-
cian is recommended before such analyses are under-
taken.

aMicrosoft Excel 2000, Microsoft Corp, Redmond, Wash.
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Appendix 1
Equivalence testing for independent binary endpoints via the
Hauck-Anderson corrected classical procedure from Tu12

Appendix 2
Equivalence testing for normally distributed independent data5

Hypothesis testing approach:

H01:PT – PR � θ1 vs H11:PT – PR � θ1
H02:PT – PR � θ2 vs H12:PT – PR � θ2

where PT and PR are the proportion of positive outcomes in the test and ref-
erence proportions, respectively, and θ1 and θ2 are the lower and upper pre-
specified limits, respectively. Reject H01 and H02 when

T1 � zα and T2 � − zα

where

T1 =
(PT – PR) – θ1 – C

,T2 =
(PT – PR) – θ2 + C

σ σ

and

σ=�PT (1 – PT) + PR (1 – PR )  
and C =

1

nT – 1           nR – 1                    2 min (nT, nR)

where nT and nR are the number of animals in the treatment and reference
groups, respectively, and C is a correction factor, calculated using the sam-
ple size of the smaller of the two groups

Confidence limits approach:

θ1 = PT – PR – zασ – C and θ2 = PT – PR + zασ + C

Hypothesis testing approach:

H0:µT – µR � δ1 or µT – µR � δ2 vs H1:δ1 � µT – µR � δ2

where µT and µR are the means of the test and reference groups, respective-
ly, and δ1 and  δ2 are the lower and upper limits of agreement, respectively.
If δi = fiµR and θi = 1 + fi, i = 1, 2, the hypotheses can be rewritten as two one-
sided equations

H01:
µT

� θ1 vs H11:
µT

� θ1µR µR

H02:
µT

� θ2 vs H12:
µT

� θ2µR µR

where θ1 and θ2 are the lower and upper limits of the equivalence interval for
the ratio of µT and µR. Reject H01 and H02 when

T1 � tα, n1 + n2 – 2 and T2 � – tα, n1 + n2 – 2

where

Ti =
ΧT – θiΧR , i = 1, 2

1  +  θi
2

�Sp��n1 n2     

where ΧT and ΧR are means of the treatment and reference groups, n1 and n2
are the number of animals in the treatment and reference groups, respec-
tively, and Sp is the pooled SD

Fieller’s confidence interval approach:

θi =
ΧTΧR � �(aR ΧT

2 + aT ΧR
2 – aTaR) 

, i = 1, 2
Χ 2

R – aR

where

aT =
S 2

p
t 2

α, n1 + n2 – 2 and aR =
S 2

p
tα

2
, n1 + n2 – 2n1 n2

Note: Conclude equivalence only if the interval (θ1, θ2) is within acceptable
limits and ΧR

2 � aR
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