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SUMMARY

The ‘at least as good as’ criterion, introduced by Laster and Johnson for a continuous response variate,
is developed here for applications with dichotomous data. This approach is adaptive in nature, as
the margin of non-inferiority is not taken as a �xed di�erence; it varies as a function of the positive
control response. When the non-inferiority margin is referenced as a high fraction of the positive control
response, the procedure is seen to be uniformly more e�cient than the �xed margin approach, yielding
smaller sample sizes when sizing non-inferiority trials under identically speci�ed conditions. Extending
this method to proportions is straightforward, but highlights special considerations in the design of
non-inferiority trials versus superiority trials, including potential trade-o�s in statistical e�ciency and
interpretability. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: non-inferiority trials; ‘at least as good as’; statistical e�ciency; adaptive versus �xed
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INTRODUCTION

The general framework for non-inferiority testing initially proposed by Blackwelder [1] is
now well established and has been explored by a number of authors [2–4]. Brie�y, the test
requires that the e�ect of a new therapy be no more than a �xed amount, ‘delta’ (�BW), worse
than the e�ect of an active control. Recent extensions include ‘adaptive’ testing methods that
allow the non-inferiority margin to vary as a function of the active control response [5–7].
In particular, the method proposed by Laster and Johnson [5] describes the statistical advan-
tage of expressing the margin as a percentage of the control response, referred to as the
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‘at least as good as’ criterion, based on the mean of a continuous response variable. We now
develop this method for application to dichotomous data and, in the process, examine both
statistical and practical aspects of its use. Extending this method to proportions is straight-
forward, but highlights special considerations in the design of non-inferiority trials versus
superiority trials, including potential trade-o�s in statistical e�ciency and interpretability.
Blackwelder [1] introduced a single-sided null hypothesis for clinical inferiority to be

rejected in favour of the at least as good as hypothesis, de�ned in terms of a dichotomous
outcome variable, with higher proportions denoting greater success, as

H0: �st −�et¿�BW versus H1: �st −�et¡�BW (1)

where �st and �et are success proportions with standard and experimental therapies and
�BW represents the clinical tolerance selected. A trial designed in this framework would be
successful if the outcome with the test therapy (et) were no worse than the outcome with the
active control (st), by some clinically tolerable amount, �BW, usually envisioned as a small
fractional part of the e�ect attributed to the active control.
Blackwelder assumes that �st (the success rate of a standard therapy) is far enough from

0 or 1, given su�ciently large sample sizes, that its estimate pst is distributed approximately
normal. Under H0, with �BW a small amount, �et should also be approximately normal justi-
fying the test statistic

z=(pst − pet − �BW)=s (2)

with

s2 = [pst(1− pst)=nst + pet(1− pet)=net] (3)

where pst and pet are simply the observed experimental proportions.
It should be noted that Blackwelder’s large sample-based choice for s2, when dealing with

the null distribution of the di�erence between two independently distributed proportions, was
not without controversy. See References [8, 9]. We feel the unpooled version (3) is consistent
with the conditions imposed by non-inferiority testing. Farrington and Manning [2] examined
several comparative forms for s2 for use with dichotomous data in non-inferiority trials and
suggest that maximum likelihood estimates would be more accurate in establishing the null
variance. Phillips [6] argues that with large samples, asymptotic arguments should su�ce to
allow the use of observed proportions and presents non-inferiority trial formulae on this basis.
In essence, Phillips uses the Blackwelder (unpooled) s2 when comparing the di�erence in
proportions with a constant (�BW) for clinical tolerance.
In this paper, as in Reference [5], Blackwelder’s approach of testing �et against �st − �BW

will be recast as a test of �et against a lower bound, a high percentage or fraction (RLB) of
�st (RLB¡1). In this format, the null and alternative hypotheses take the form

H0: �et − RLB�st60 and H1: �et − RLB�st¿0 (4)

where higher proportions denote greater success.
The relationship between �et and �st may be characterized by their ratio as RTrue =�et=�st.

This parameter (RT) is useful for planning non-inferiority trials as it allows one to quantify the
e�ectiveness of the new therapy in direct relation to expected e�cacy of the active comparator.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1115–1130
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In this format, the null and alternative hypotheses would have the form

H0: RT6RLB versus H1: RT¿RLB (5)

HYPOTHESIS TESTING

Blackwelder’s approach in (1) is identically equivalent to the high-fraction approach in (4)
when �st − �BW =RLB�st, or

�BW = (1− RLB)�st (6)

Note, as in Reference [1], to justify the as least as good as application, �BW must be positive,
and thus RLB¡1 as de�ned here. As Blackwelder points out, �BW could in theory be zero
or negative, thus RLB¿1, but these cases are uncommon for non-inferiority testing. More
typically, when �BW is selected as a small part of �st, RLB�st is the complementary larger
part of it.
Our large sample formulations for the test statistics considered in this paper will rely on

the experimentally observed proportions as in References [1, 6]. Unconditionally based exact
tests for non-inferiority are available and are discussed below. The sample-based contrasts
and their variances for both approaches (Blackwelder and the high-fraction approach) are as
follows.
For Blackwelder,

pst − pet − �BW (7)

with

Var(pst − pet − �BW)= [�st(1−�st)=nst + �et(1−�et)=net] (8)

by independence. For the high-fraction lower-bound approach

pet − RLBpst (9)

with

Var(pet − RLBpst)= [�et(1−�et)=net + �st(1−�st)R2LB=nst] (10)

Therefore, when RLB¡1,

Var(pst − pet − �BW)¿Var(pet − RLBpst) (11)

The resulting relative e�ciency follows from the direct translation (mapping) between the two
equivalent forms of contrasts and the usual assumptions considered for independent random
variables.
In this form, the resultant test statistic is asymptotically normal as

(pet − RLBpst)=[pet(1− pet)=net + pst(1− pst)R2LB=nst]1=2 (12)

where here, higher proportions denote greater success. Phillips [6] con�rms the form of this
test statistic produced for an adaptive test for non-inferiority. The adaptive nature of Laster

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1115–1130
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and Johnson’s test for continuous data [5] as derived here for proportions, and Phillips’ test [6],
arises from the fact that the margin for non-inferiority varies as a function of the positive
control response.
As noted by Phillips [6], similar results are obtained using a con�dence interval based on

the same Var(pet − RLBpst) as

pet − RLBpst − Z(1−�)[pet(1− pet)=net + pst(1− pst)R2LB=nst]1=2¿0 (12a)

to reject H0: �et − RLB�st60.
If a con�dence interval procedure were applied to exclude �BW based on the unpooled

Var(pst −pet − �BW) seen in (8), it would not produce the same results, generally, relative to
the con�dence interval seen in (12a) using Var(pet − RLBpst), for it would have the wrong
size and be generally ine�cient (given RLB¡1). A similar phenomenon was pointed out in
Reference [5] using continuous data. The ine�ciency of Blackwelder’s hypothesis test in (11),
in similar circumstances, also pertains to the associated con�dence interval procedure.

SAMPLE SIZE REQUIREMENTS

For studies large enough to justify the normal approximation, the variance of (pet − pstRLB)
shown in (10) leads to

nper group = [(Z1−� − Z�)2(�et(1−�et) + �st(1−�st)R2LB)]=(�et −�stRLB)2 (13a)

or

nper group = [(Z1−� − Z�)2(�et(1−�et) + �st(1−�st)R2LB)]=�2st(RT − RLB)2 (13b)

where �st and �et are the success proportions with standard and experimental therapies,
RT =�et=�st, RLB the lower bound (high fraction, RLB¡RT) with Z1−� and Z� the normal
deviates, producing the chosen single-sided probabilities under the operationally speci�ed
hypotheses

H0: �et − RLB�st60 and H1: �et − RLB�st¿0 (4)

Phillips [6] con�rms the form of (13a) as a special case of a more general sample size
equation produced for an adaptive test for non-inferiority.
A special case occurs as well, when �et =�st =� or RT =1, where (13b) can then be

rewritten as

nper group = [(Z1−� − Z�)2(1−�)(1 + R2LB)]=�(1− RLB)2 (14)

The above formulae rely on asymptotic arguments in using the usual normal approximations.
Phillips [6] argues that studies that typically enrol 100–200 or more patients per treatment
group, with success rates below 95 per cent, should hold up reasonably well, so that the size
of the test is near the nominal �-level.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1115–1130
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COMPARATIVE EFFICIENCY

With continuous data in Reference [5], an e�ciency ratio was derived to compare the sam-
ple size requirements for the high-fraction and Blackwelder approaches. The high-fraction
approach was found to be uniformly more e�cient than Blackwelder’s method when RLB¡1,
yielding smaller sample sizes for non-inferiority trials under commonly speci�ed conditions.
With a dichotomous outcome variable, two versions of the e�ciency ratio result from a com-
parison of sample sizes under di�erent assumptions for RT (EF�a and EF�b). In the general
case with no restriction on RT,

EF�a = [�et(1−�et) + �st(1−�st)R2LB]=[�et(1−�et) + �st(1−�st)] (15a)

whereas in the special case of RT =1 (or �et =�st =�),

EF�b = [1 + R2LB]=2 (15b)

This form (15b) for the e�ciency ratio is identical to the version produced for continuous data
in Reference [5]. In either case, the relative e�ciency of the high-fractioned test found with
continuous data remains uniformly (when RLB¡1) in the case of proportions, as indicated
above by (11).

DEALING WITH PROPORTIONS OF FAILURE

Note that in the original work [5] with continuous data, whenever smaller values denote
improvement, the ratio RT may be inverted (as �st=�et) for testing against a lower bound,
to maintain the advantage of improved e�ciency. We will make the same suggestion here.
When dealing with failure data or the like, simply rede�ne RT as

R′
T =�st=�et

This will allow the continued use of the lower bound RLB(¡1) to insure the increased
e�ciency whenever smaller values denote improvement. When this inverted de�nition for
RT is used, changes will be required in the statements involving hypotheses, test statistics,
and e�ciency equations. Sample size formulations, with the exception of R′

T =RT =1, will
require changes as well.
The null and alternative hypotheses would then be rewritten as

H0: �st6RLB�et versus H1: �st¿RLB�et (16)

when lower proportions denote greater success. The test statistic in like fashion, would be

(pst − RLBpet)=[pst(1− pst)=nst + pet(1− pet)R2LB=net]1=2 (17)

Sample size equations would be modi�ed (RT �=1) to
nper group = [(Z1−� − Z�)2(�st(1−�st) + �et(1−�et)R2LB)]=(�st −�etRLB)2 (18a)

or

nper group = [(Z1−� − Z�)2(�st(1−�st) + �et(1−�et)R2LB)]=�2et(R′
T − RLB)2 (18b)
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with R′
T =�st=�et. Similar substitutions would be required to right the e�ciency equations as

well. Note that with failure data as described here, Blackwelder equivalence is referenced to
the experimental therapy as �BW = (1− RLB)�et.
Tables I and II display corresponding sample size (per group) requirements for both success

and failure data (respectively), when testing lower bounds on non-inferiority (RLB) of up to
95 per cent ‘as good as’ (with 80 per cent power; one-tailed �=0:05). To demonstrate sample
sizes with similar critical regions for the lower-valued proportions in either set of tables, an
RLB of 50 per cent is included. The savings in sample size associated with the high-fractioned
approach versus Blackwelder’s method (up to 39 per cent for RLB =0:75 to 0.95, and up to
69 per cent for RLB of 0.50, under the conditions examined in Tables I and II) makes it an
attractive option for planning non-inferiority studies, and, as illustrated in the next section,
adds a new dimension to the study planning process.

STUDY DESIGN SCENARIOS

We illustrate the use of this method for planning a study when various hypothesis-testing
strategies are under consideration. Suppose a new dental gel is to be investigated for use as
a topical anaesthetic during periodontal scaling and subgingival curettage. Pain severity will
be assessed on a 5-point scale, with control of pain dichotomized as either success (scores
of 0 or 1) versus failure (scores of 3, 4 or 5). The sponsor believes that the new product
is at least as e�ective as a standard, marketed agent in controlling pain, with a faster acting
e�ect. In previous placebo-controlled studies, the marketed product demonstrated a 70 per cent
success rate in patients with advanced periodontitis, on the basis of the same pain assessment
scale. The sponsor will employ a randomized, double-blind, parallel-group design to compare
the new product to placebo as well as an active control (the standard, marketed anaesthetic)
in the same target population. To establish e�cacy, the study must demonstrate that the
new treatment is superior to placebo and not inferior to the active control. To fully validate
the outcome of the study, response to the active control must also be superior to placebo.
Weighing both cost and regulatory concerns, we evaluate sample size requirements under a
number of di�erent, but equally plausible assumptions and hypothesis-testing frameworks.

Non-inferiority trials

Prior studies in this periodontal maintenance setting indicate that a di�erence in success rates
of 16 per cent (treatment-70 per cent versus placebo-54 per cent) is a clinically meaningful
e�ect. To detect this di�erence and demonstrate superiority of each active treatment over
placebo, with two-tailed �=0:05 and �=0:2 (80 per cent power), the required sample size
per group would be

nper group ≈ 141
using equation (13a) with RLB =1 (which yields the usual sample size formula for superiority
based on the variance in (3) above).
Note, a continuity correction is not used here. Furthermore, adjustment of the �-level is

unnecessary for all three hypotheses proposed must be rejected to meet the requirements of
the study (see Reference [10]).

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1115–1130
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For non-inferiority, we set RLB =0:80 to determine if the new product is at least
80 per cent as e�ective as the standard, keeping �=0:05 (one sided in this instance) and
�=0:2. Using equation (14) with �et =�st = 0:7 (for RT =1)

nper group = [(1:645 + 0:84)2(1− 0:7)(1 + 0:82)]=0:7(1− 0:8)2

≈ 109 (see Table I)

This sample size for testing non-inferiority is smaller than that required for testing superiority
(n=141), even though a smaller di�erence is sought (0.14 for non-inferiority versus 0.16 for
superiority). Two reasons explain the di�erence in sample size requirements: use of the single-
sided rejection region and a smaller variance. By comparison, Blackwelder’s nper group = 132, for
the same non-inferiority margin (again 0.14 or 0.2(0.7)), with a single-tailed rejection region
as well (see Table I). Clearly, if the study were sized for a test of superiority, it would have
more than adequate power to establish non-inferiority under the assumed conditions (once
again, no adjustment for multiple comparisons has been made).
Note in particular that, if RLB =0:8 were considered too lenient, higher limits could be

considered, but sample sizes will soar. This is illustrated in the following table (from Table I)
using the high-fraction (HF) and Blackwelder (BW) approach to non-inferiority testing, under
identical conditions (with RT =1). Sample sizes are per group:

RLB Sample size (HF) Sample size (BW)

0.85 203 236
0.90 480 530
0.95 2016 2120

Non-inferiority versus Superiority

There is often limited evidence, or only a theoretical basis, for assuming that the new product
will out-perform the active control, and the magnitude of the di�erence is usually uncertain.
This debate often gives rise to the following question: What e�ect size in superiority could
be detected with identical type 1 error (adjusted for two-tailed hypothesis testing) and type
2 error, with sample sizes similar to those just determined for a non-inferiority test, if the
new therapy were, in fact, better than the active control (RT¿1)?
Returning to the above example, suppose the sponsor suspects that the new dental gel is

more e�ective than the active control, to some marginal degree. What would be the case
for testing superior performance based on an assumed 10 per cent or even a 20 per cent
improvement in response (e.g. RT =1:1 or 1.2), thus e�cacies of about 77 per cent or
84 per cent, respectively? Again, with two-tailed �=0:05 and 80 per cent power, the re-
quired sample sizes per group (based on the superiority form of equation (13a) with RLB =1)
would be

n(RT=1:1) = 619 and n(RT=1:2) = 138

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1115–1130
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in order to detect di�erences in success rates of 7 or 14 per cent (respectively). In this
instance, when the new product o�ers a relatively small bene�t (RT =1:1) over standard
therapy, the sample size adequate for testing non-inferiority provides insu�cient power for a
test of superiority. By contrast, Table I indicates that nper group = 110 would be su�cient to
demonstrate that the new dental gel is at least ‘90 per cent as good as’ (not superior to)
the active comparator if, in fact, RT =1:1. With RT =1:2, nper group = 65 would su�ce to make
a ‘95 per cent as good as’ claim. Again, the sample size of n=141 per group required for
testing superiority against placebo (with RT =1:0) would ful�l power requirements for these
other hypothesis tests as well.
The upshot of these considerations is clear based on the assumptions RT =1:1 or 1.2. Raise

the sample size to establish the superiority claim (n≈ 619 or 138 per group, respectively),
or instead, keep costs down and design a non-inferiority trial (n=110 or 65 per group) to
establish that the new dental gel is at least 90 or 95 per cent (respectively) as good as the
active control product. If the RT =1 assumption is considered more realistic, the 80 per cent
as good as design, with n=141 per group, would cover all of the above with the exception
of the superiority case for RT =1:1.
Typically, the choice depends on �nancial considerations and the degree of acceptable risk.

A relatively safe strategy is to size the study for superiority while proposing a high-fractioned
non-inferiority trial (at 90 per cent or 95 per cent). Even if the study failed to demonstrate
superiority, it could still support a claim that the new product is ‘at least as good as’ the
active control. This ability is built into the non-inferiority paradigm. It could be argued that the
strategy generates a potential multiplicity concern, allowing two ways to succeed in claiming
signi�cance: superiority or non-inferiority. However, Morikawa and Yoshida [10] demonstrate,
on the basis of closed hypothesis-testing procedures (CTP), that no adjustment of the �-level
is required. That is, if superiority were to be established, non-inferiority is contained in that
result; thus by CTP, no adjustment to the type 1 error is required even if only non-inferiority
is obtained.

INTERPRETING STUDY RESULTS

To perform the non-inferiority test at study completion, the observed proportions pet and pst
are used to construct the following test statistic

(pet − RLBpst)=[pet(1− pet)=net + pst(1− pst)R2LB=nst]1=2 (12)

which, if larger than the single-sided critical constant Z�, allows us to reject H0:
�et − RLB�st60 and infer that the experimental therapy is at least as good as the standard
therapy by an amount exceeding (RLB × 100) per cent.
We illustrate the use of this test in the context of the above example. Let us say the sponsor

sizes the study to detect superiority of each active treatment over placebo, and to perform
the non-inferiority test based on RT =1, with a prescribed lower bound of RLB =0:8 (80 per
cent as good as). This approach yields a sample size of 141 per group (or 423 total for the
three-arm trial), since the larger number required for superiority testing supersedes the smaller
number needed to evaluate non-inferiority.
It should be noted that in those instances where no superiority justi�cations are required,

thus only the two-arm demonstration of non-inferiority, the smaller sample size would su�ce.
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In the present example, the two-arm non-inferiority comparison would yield considerably
smaller sizes of 109 per group.
Study results turn out as follows:

Groups psuccess (per cent)

New dental gel 69
Active control 72
Placebo 54

Non-inferiority test (high fractioned equation (12))

Z =(0:69− 0:8(0:72))=[0:69(1− 0:69)=141 + 0:72(1− 0:72)0:82)=141]1=2 ≈ 2:31

(p¡0:01 single sided)

Superiority test (active control versus placebo)

Z =(0:72− 0:54)=[0:72(1− 0:72)=141 + 0:54(1− 0:54)=141]1=2 ≈ 5:54

(p¡0:0000 two sided)

Superiority test (new dental gel versus placebo)

Z =(0:69− 0:54)=[0:69(1− 0:69)=141 + 0:54(1− 0:54)=141]1=2 ≈ 2:62

(p¡0:009 two sided)

The trial succeeds in establishing non-inferiority based on 80 per cent as good as, and in both
tests of superiority. Note, as mentioned above, no control of the joint �-level is required.

A di�erent scenario

Now consider results if the new drug performed considerably better than the active control.
That is, suppose the success rates were 87 per cent in the new drug group, 69 per cent with
active control, and 54 per cent in the placebo group.

Group psuccess (per cent)

New dental gel 87
Active control 69
Placebo 54

In this scenario, the new drug is statistically signi�cantly more e�ective than the active
control (p¡0:0001, two sided). Based on CTP as discussed above, the claim of superiority is
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justi�ed, despite the fact that the trial was designed with a non-inferiority objective. Clearly,
non-inferiority is subsumed under the alternative hypothesis for superiority. The superiority
of the active control over placebo (p¡0:0001, two sided) further validates the e�cacy of the
new product.
Once again, it could be more cost-e�ective to plan the study as a non-inferiority trial,

assuming that the test product o�ers a small but realistic advantage over the active control. This
conservative approach allows for a broader range of successful trial outcomes, spanning both
non-inferiority and superiority claims. Given the possible scenarios noted above, it would be
prudent to size a study for superiority testing, while proposing a high-fraction non-inferiority
margin for the primary hypothesis test. Such an approach has minimal associated risk, with
the maximum chance for a successful marketing claim.

DISCUSSION

The at least as good as criterion previously developed for continuous data has similar
advantages in the case of binomial endpoints. It has been shown under typical conditions for
use in non-inferiority trials (i.e. where RLB¡RT and RLB¡1), that the hypothesis test based
on the high-fraction format H0: �et − RLB�st60 is more powerful than Blackwelder’s test of
H0: �st−�et¿�BW to detect any given alternative hypothesis contained in H1: �et−RLB�st¿0
or, equivalently, �st −�et¡�BW. The increased e�ciency is a result of smaller SE’s for con-
trasts de�ned by the high-fraction hypothesis test (RLB¡1) compared to their Blackwelder
equivalents.
We have also suggested a strategy to evaluate the e�ect size that can be detected in a

superiority trial of the same sample size required to support non-inferiority claims, with type 1
and type 2 errors held constant. As illustrated, study planners can explore a range of study
scenarios and examine trade-o�s with the use of at least as good as and superiority designs,
when patient resources are limited and the merits of the new therapy versus standard are
uncertain.
Although we illustrate the method using e�cacy response rates, the high-fraction approach

to trial planning is particularly useful for non-inferiority tests involving safety outcomes,
including event rates for toxicity. Oncology and critical care studies are attractive settings
for this procedure, given the high mortality typical of such studies and the need to examine
clinical bene�ts of new therapies on morbidity or quality of life. For instance, a drug may
not be expected to improve survival but could prolong the duration of tumour response or
delay the need for narcotics to control pain. The objective of such studies may be to assure
that the new therapy has no adverse impact on mortality (e.g. survival of patients administered
the new therapy should be at least 95 per cent of survival with standard care), while the new
therapy is shown to o�er a signi�cant advantage in terms of other important clinical outcomes.
The selection of a non-inferiority margin that is ‘adaptive’ to the control group response

o�ers many advantages. First, study planners often �nd it simpler to agree upon the ‘per
cent as good as’ or ‘high-fractional part’ of the positive control e�ect that the new product
must achieve, than to select an absolute value for clinical tolerance (Blackwelder’s �BW).
Expressing non-inferiority as a high numerical fraction of the expected active control response
yields a more e�cient testing procedure, and thus, savings in sample size. In addition, there
are certain advantages in using a percentage lower bound for testing non-inferiority at the
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conclusion of the study. If the control response is not predicted accurately, the amount of
inferiority considered tolerable may no longer be a meaningful value (�BW) in relation to
the observed control response. By contrast, the percentage lower bound (RLB) can always
be used for hypothesis testing, and will typically be a relevant threshold for non-inferiority,
regardless of the magnitude of observed positive response in the control group. In this sense,
the method is adaptive as seen in Reference [6]. Further, when conducting hypothesis tests for
multiple related outcome variables, the application of the same high fraction of the standard
as a general criterion for testing non-inferiority, will enhance the credibility of the analysis. It
avoids pre-specifying di�erent (and sometimes arbitrary) �-values for each outcome variable
to de�ne clinical tolerance and allows for a consistent interpretation of the study.
Phillips [6] addresses the value of the adaptive lower bound RLB by indicating its analogy

with �BW as ‘�xed in advance by the experimenter’, and thus not dependent on the observed
success rates. He points out, further, that his work has indicated no discontinuities in the size
or power functions for these adaptive methods.
Regardless of the approach to non-inferiority testing, there is potential loss of power if the

control group response is not predicted accurately. It is important to review past performance
of the active control treatment in previous placebo-controlled trials in order to assess the
constancy and reproducibility of its e�ect relative to placebo. The ‘constancy assumption’
can be critical to the interpretation of e�cacy in non-inferiority trials, as it would require
that the size of the active control e�ect be bounded by its e�ect size in historical placebo-
controlled trials. See the ICH guidelines [11] and Hung et al. [12] for more in-depth coverage
of this topic.
The scenarios presented in this paper underscore the advantage of nominally designating

high-fractioned non-inferiority objectives for clinical trials that are, in fact, adequately pow-
ered to demonstrate clinical superiority. Insofar as the results support non-inferiority, at a
minimum, the trial will be successful. However, this approach also allows for a claim of
superiority if treatment e�ects emerge as anticipated. Clearly, this approach should only be
taken if the new product is believed to be superior to the active control. It would absurd to
plan a non-inferiority study with RT greater than 1 (speciously), purely for the purpose of
decreasing the sample size, as this would lead to gross under-powering of the study.

A NOTE ON EXACT AND CONTINUITY-CORRECTED
TESTS OF NON-INFERIORITY

Exact tests are usually considered for small samples, when asymptotic normality may be
in question. Farrington and Manning [2] remind us that an exact test of null hypotheses
for proportions with non-zero di�erences (or non-unity relative risks) does not exist, thus
providing no absolute reference to compare di�erent methods. To be clear, there is in fact
no permutation-based exact test conditional on the actual observations in an experiment when
non-zero centred null hypotheses are involved (or non-unity relative risks). See Reference [13].
Chan [14] has discussed unconditional exact tests of non-inferiority for smaller data sets using
the unconditional Z statistic described by Farrington and Manning [2].
Since non-inferiority testing with proportions conditionally has no exact test basis with non-

zero centred null hypotheses and Chan’s exact unconditional approach [14] does not require
the continuity adjustment, such corrections were not applied in these examples. No mention or
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use of the adjustment is found in Reference [6]. For a comprehensive review of the necessity
of such adjustments with approximate formulae, see Reference [15].
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