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A crisis has recently been described in the re-
producibility of studies reported in leading sci-

ence journals.1–6 One of the multiple origins of this 
crisis is that significant statistical results obtained 
in some studies were not replicated or supported in 
other studies.7–9 One of the reasons given is that re-
searchers often wrongly generalize their results to 
the population of interest (ie, the target population) 
after obtaining a significant result in their study sam-
ple.10,11 P-hacking and HARKing (where HARK stands 
for “hypothesis after result is known”) are inappro-
priate methods of analyzing and interpreting study 
findings that lead to false-positive results. P-hacking 
(also called P-fishing) occurs when researchers col-
lect data without a predetermined sample size, select 
data without a priori identification of inclusion and 
exclusion criteria, or select statistical test approaches 
until nonsignificant results become significant.12–15 
HARKing occurs when researchers present a post 
hoc hypothesis based on their results as if it were an 
a priori hypothesis.16 However, even in the absence 
of P-hacking, HARKing, biases,17 or any other errors 
in scientific reporting, the probability of wrongly in-
ferring that obtained significant results apply to the 
target population is high in some situations.

The purpose of this article is to help research-
ers in clinical veterinary science and clinicians who 
interpret research findings appreciate the degree of 
certainty or uncertainty when generalizing the study 
results to the target population of studied animals, 
according to the characteristics of the clinical study. 
This appreciation is also important in the practice of 
evidence-based veterinary medicine,18 particularly 
when critically appraising the evidence within the 
more general framework of the clinical decision-mak-
ing process.19,20 To this end, 2 examples of hypotheti-
cal studies (each considered feasible and ethical for 
simplification) will be used. Statistical and diagnostic 
test concepts will be reviewed to demonstrate the 
similarity between diagnostic test interpretation and 
statistical test interpretation and to illustrate the cal-
culation of the probability of an incorrect conclusion 
after a significant association has been obtained.
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General Concepts
Throughout this article, the context will al-

ways be the following: researchers seek to provide 
evidence that there is a true association between an 
exposure (eg, neuter status, a certain treatment [vs 
placebo], or a surgical [vs medical] intervention) and 
an outcome (eg, disease occurrence, tumor remission 
rate, or survival rate). The statistical tests mentioned 
are those that can be used to test such associations, 
and the conclusions drawn from other statistical tests 
(eg, tests for normality of data distribution) will not 
be addressed. Furthermore, the term “significant asso-
ciation” will be used to describe an association classi-
fied as significant on the basis of the observed P value  
(P < α) and not on the basis of clinical importance.21,22

Hypothetical Studies
The first hypothetical study (study 1) used as an 

example to explain concepts is as follows. Mullin et 
al23 conducted a nonrandomized study to assess the 
association between doxorubicin chemotherapy (vs 
no chemotherapy; control group) and survival time 
following diagnosis in dogs with presumptive cardiac 
hemangiosarcoma. The observed significant difference 
in survival times between the 2 groups suggested a po-
tential effect of doxorubicin chemotherapy on survival 
time. Building on this information, another group of 
investigators design a randomized placebo-controlled 
clinical trial (study 1) to confirm the beneficial effect of 
doxorubicin chemotherapy within the first 4 months 
of use. To do so, they use the Kaplan-Meier curves pro-
vided in the previous report,23 which show that 45% of 
dogs in the doxorubicin group and 5% of dogs in the 
control group remained alive 4 months after diagnosis, 
and use these data to calculate a sample size sufficient 
to yield 80% statistical power (ie, 79 dogs/group). The 
investigators then follow the dogs for 4 months after 
placebo or treatment initiation and compare survival 
times during this period between groups with the 
Kaplan-Meier method and log-rank test. Study 1 can 
be considered confirmatory because the purpose is to 
confirm the result of the previous study.
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In the second example (study 2), masitinib 
monotherapy has been suggested to have potential 
for the treatment of dogs with epitheliotropic T-cell 
lymphoma.24 Consequently, investigators seek to 
conduct a randomized controlled clinical trial to as-
sess the effect of masitinib in dogs with multicentric 
lymphoma on remission (partial or complete) rate. 
To do so, they randomly allocate 80 dogs with multi-
centric lymphoma to receive masitinib plus predni-
sone (n = 40; mastinib group) or prednisone only 
(40; control group). This number (n = 80) was not 
based on a priori sample size calculation, but rather 
on the number of dogs that the investigators antici-
pated they could enroll during the predefined pe-
riod. They then follow the dogs for 3 months after 
treatment begins and compare between groups the 
proportion of dogs that achieve partial or complete 
remission by that time. Study 2 can be considered 
exploratory because it is the first to assess a potential 
association between masitinib plus prednisone use 
and lymphoma remission rate in the population of 
dogs with multicentric lymphoma.

Review of Statistical Concepts

The null hypothesis and its acceptance 
or rejection

A statistical test of the association between an 
exposure and outcome is based on a null hypothe-
sis, which states that there is no association in a pre-
defined (target) population.25 For instance, the null 
hypothesis of the log-rank test performed in study 1 
is that there is no association between doxorubicin 
chemotherapy (vs a placebo) and survival time in 
dogs with presumptive cardiac hemangiosarcoma. If 
the null hypothesis is rejected, the conclusion is that 
the study provides evidence in support of a true asso-
ciation in the population between the exposure and 
the outcome. Conventionally, rejection or acceptance 
of the null hypothesis has been based on the P value 
yielded by the statistical test. If that P value is less 
than a threshold value (α), the association is classified 
as significant in the study sample, and one concludes 
that the null hypothesis is false (ie, the null hypoth-
esis is rejected). Nevertheless, this use of P values 
and the significant-nonsignificant approach has been 
questioned by many scientists26–29 and is believed to 
have contributed to the reproducibility crisis.

Type I and type II errors  
and statistical power

When no true association exists between the ex-
posure and outcome in the population (ie, when the 
null hypothesis is true), the probability of obtaining 
a significant (P < α) association in the study sample 
is α (also known as the type I error rate). When a 
true association exists between the exposure and 
outcome in the population (ie, when the null hypoth-
esis is false), the probability of not obtaining a signifi-
cant association in the study sample is equal to β (also 

known as the type II error rate). Therefore, in such 
a situation, the probability of obtaining a significant 
association is 1 – β, which represents the statistical 
power of the study.

Review of Diagnostic Test  
Concepts

The sensitivity (Se) of a diagnostic test is the 
probability of a positive test result when the disease 
(or any health-related condition) is present, and the 
specificity (Sp) is the probability of a negative test re-
sult when the disease is not present.30 The positive 
predictive value (PPV) of a diagnostic test is the prob-
ability that an individual with a positive test result 
would truly have the disease.30 In a sample of N ani-
mals, Se, Sp, and PPV can be estimated by calculating 
the proportion of true-positive animals (ie, those for 
which a positive test result is true) among diseased 
animals (Se), the proportion of true-negative animals 
(ie, those for which a negative test result is true)
among disease-free animals (Sp), and the proportion 
of true-positive animals among test-positive animals 
(PPV) as follows:

where TP is the number of true-positive animals, 
FN is the number of false-negative animals, FP is the 
number of false-positive animals, and TN is the num-
ber of true-negative animals (Table 1).

These values can be reexpressed by using pro-
portions instead of frequencies. To do so, let π be the 
prevalence of the disease in the population, which 
represents the probability of having the disease for an 
animal randomly drawn from the population before 
the result of the diagnostic test is known. If a sample 
of N animals is randomly drawn from a population in 
which the prevalence of disease is π, it is expected 
that there will be N X π diseased animals and N X 
(1 – π) disease-free animals. Among the N X π dis-
eased animals, there will be N X π X Se true-positive 
animals; among the N X (1 – π) disease-free animals, 

PPV =
TP

FP + TP
 (formula 1) 

Sp =
TN

FP + TN
 

Se =
TP

TP + FN
 

Table 1—Distribution of frequencies (ie, number of animals) 
within a sample of N animals according to the results of a di-
agnostic test and the true absence or presence of the disease.

Result Disease present Disease absent Total

Positive TP FP FP + TP
Negative FN TN TN + FN
Total TP + FN FP + TN N

FN = The number of false-negative animals. FP = The number of 
false-positive animals. TN = The number of true-negative animals. TP = 
The number of true-positive animals.
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there will be N X (1 – π) X Sp true-negative animals 
(Table 2).

The formula for calculation of PPV can be accord-
ingly reexpressed by replacing TP with N X π X Se 
and FP with N X (1 – π) X (1 – Sp), which yields the 
following formula:

The equivalence between the 2 formulas for 
PPV (ie, formulas 1 and 2) can be demonstrated in 
a hypothetical example involving 1,493 animals, 15 
of which truly have the disease of interest and 86 of 
which have a positive result from a diagnostic test, 
yielding an Se of 0.80 and Sp of 0.95 (Table 3). The 
PPV as calculated with formulas 1 and 2, respectively, 
is as follows:

These calculations show that, for situations in 
which the prevalence of the disease is low (eg, 1%), 
a diagnostic test that has very good Se (eg, 80%) and 
excellent Sp (eg, 95%) will still have poor PPV (eg, 
14% per both formulas for PPV). A PPV of 14% would 
be interpreted as indicating that only 14% of animals 
with a positive test result truly have the disease, 
whereas 86% (100% – 14%) of animals with a positive 
test result are truly disease free.

Application of Diagnostic Test 
Concepts to Statistical Tests

Although fundamental differences exist between 
interpretation of diagnostic test results and interpre-
tation of statistical test results, some aspects of diag-
nostic test interpretation can serve as a reasonable 
analogy for statistical test interpretation.31 To apply 
the concepts of Se, Sp, and PPV to a statistical test of 
the association between an exposure and outcome, 
one must define analogous terms for having the dis-
ease, being disease-free, and having positive and neg-
ative test results. With a statistical test, researchers 
typically seek evidence that there is a true association 
in the population (ie, evidence supporting that the 
null hypothesis is false), and a significant association 
in the study sample is in favor of the evidence they 
are seeking. In the situation of diagnostic tests, clini-

cians may seek evidence that an animal has a certain 
disease, and a positive test result for this disease is in 
favor of the evidence they are seeking (Table 4).32 
The Se of a diagnostic test is the probability of ob-
taining a positive result when the animal has the dis-
ease. By analogy, the Se of a statistical test is therefore 
the probability of obtaining a significant association 
when the null hypothesis is false, which is analogous 
to the statistical power of a study (1 – β). The Sp of a 
diagnostic test is the probability of obtaining a nega-
tive result when the animal is disease free. By anal-
ogy, the specificity of a statistical test is the probabil-
ity of obtaining a nonsignificant association when the 
null hypothesis is true. Given that α is the probability 
of obtaining a significant association when the null 
hypothesis is true, by analogy, the Sp of a statistical 
test is equivalent to 1 – α.

Relevance of calculating the PPV  
of a statistical test

In veterinary practice, the PPV of diagnostic tests 
is much more useful to clinicians than are the Se and 
Sp of such tests. When a positive test result is obtained 
for an animal, clinicians would typically like to know 
the probability that the animal truly has the disease, 
which the PPV reflects. By analogy with statistical 
tests, when a significant association is obtained, one 
would like to know the probability that the associa-
tion truly exists in the population (ie, the PPV of the 
null hypothesis being false). For instance, the PPV of 
the log-rank statistical test performed in study 1 is the 
probability that there is a true association between 
doxorubicin chemotherapy and survival time for 
dogs with presumptive cardiac hemangiosarcoma, 
given that the investigators obtained a significant as-
sociation in their study sample. When the PPV of a 
statistical test is low, the probability that there is a 
true association in the population is low even when 
the association was deemed by the test to be signifi-
cant. In such situations of low PPV, it would not be 

PPV =
  

(1 – π) X (1 − Sp) + (π X Se)
(formula 2)

π X Se

PPV =
  π X Se

(1 – π) X (1 – Sp) + (π X Se)
=

0.01 X 0.80
(1 – 0.01) X (1 – 0.95) + (0.01 X 0.80)

= 0.14

PPV =
TP

FP + TP
 =  

12
86

 = 0.14

Table 2—Distribution of expected frequencies within a sample size of N animals 
randomly drawn from a population in which the prevalence of a disease is π, and 
according to Se and Sp of a diagnostic test.
Result Disease present Disease absent Total

Positive N X π X Se N X (1 – π) X (1 –Sp) N X ([1 – π] X [1 – Sp] + [π X Se])
Negative N X π X (1 – Se) N X (1 – π) X Sp N X ([{1 – π} X Sp] + [π X {1 – Se}])
Total N X π N X (1 – π) N

Table 3—Illustrative example of distribution frequencies of 
hypothetical diagnostic test results for a sample size of 1,493 
animals in which the prevalence of disease is 1% (ie, 15 animals 
truly have the disease).

Result Disease present Disease absent Total

Positive 12 74 86
Negative 3 1,404 1,407
Total 15 1,478 1,493

Se =
TP

TP +  FN
=  

12
15

 = 0.80 Sp =
TN

FP +  TN
 =  

1,404
1,478

 = 0.95  
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surprising if the significant association identified in 
one study could not be replicated in another study of 
the same association targeting the same population.10

To calculate the PPV of a statistical test, values for 
Se, Sp, and π in formula 2 can be replaced with their 
analogous values for statistical tests (Table 4). For a 
statistical test, we previously determined that Se = 1 
– β and Sp = 1 – α. We must now interpret the value 
of π for statistical tests.

When researchers plan a study to test the as-
sociation between an exposure and outcome, they 
have some level of uncertainty that this association 
truly exists in the population. They must have such 
a level of uncertainty because a study would not be 
necessary if they knew with 100% certainty that the 
null hypothesis is false. Before conducting a study, 
researchers therefore have in mind an a priori prob-
ability that the null hypothesis is false in the stud-
ied population, and this probability lies between but 
excludes 0 and 1. For instance, because the associa-
tion between doxorubicin chemotherapy and time to 
death in dogs with presumptive cardiac hemangiosar-
coma had been previously suggested, the investiga-
tors of study 1 should have a higher level of certainty 
that this association truly exists, compared with that 
of the investigators of study 2, where the tested asso-
ciation had never been evaluated before.

In the context of diagnostic tests, π was the 
probability of having the disease for an animal ran-
domly drawn from a population before the result of 
the test was known. For a statistical test, π would 
be the a priori (ie, before the statistical test is per-
formed) probability that the null hypothesis is false 
(ie, the a priori probability that the association truly 
exists in the population). The expression “a priori” 
refers to the notion of “prior information” in Bayes-
ian statistics,33 in the context of the PPV of statistical 
tests.32,34 As Browner and Newman33 wrote, the value 
of π for statistical tests is based on “biologic plausi-
bility, previous experience with similar hypotheses, 
and knowledge of alternative scientific explanations.” 
Therefore, in an exploratory study where research-
ers are the first ones to assess an association between 
an exposure and outcome in a specific target popula-
tion, it must be admitted that the a priori probability 
that such association truly exists (π) is low, despite 
the potential strong pathophysiologic basis for this 
exploratory study.10

Formula 2 for the PPV of a diagnostic test can be 
rewritten by replacing Se and Sp with their analogous 
values for statistical tests (ie, [1 – α] and [1 – β], re-
spectively) as follows:

where π represents the a priori probability that the 
null hypothesis is false (ie, the probability that the 
association truly exists), α is the type I error rate, β 
is the type II error rate, and (1 – β) is the statistical 
power.

For example, suppose that the statistical power 
of study 2 is 80% when testing the association be-
tween masitinib plus prednisone use (vs prednisone 
use only) and lymphoma remission rate in dogs with 
multicentric lymphoma and that α is set at 5% (ie, α = 
0.05). Suppose that the probability that this associa-
tion truly exists is 1% (ie, π = 0.01); this low value of π 
can be explained by the fact that study 2 is explorato-
ry and therefore involves much a priori uncertainty 
about the existence of such an association. On the 
basis of these characteristics, the PPV as calculated 
with formula 3 is 0.14 (14%). This value of 14% means 
that if the investigators of study 2 conduct this study 
and obtain a significant association, the probability 
that this association truly exists in the population of 
dogs with multicentric lymphoma is only 14%.

False-positive report probability  
of a statistical test

For situations in which researchers would like to es-
timate the probability of wrongly concluding that there 
is a true association in the population after obtaining a 
significant association in the study sample, the comple-
ment of the PPV (1 – PPV) is the most relevant indica-
tor. This complement of PPV is called the false-positive 
report probability (FPRP)35,36 and is the probability that 
there is no true association in the population after ob-
taining a significant association in the study sample. 
In other words, the FPRP quantifies the probability of 
wrongly concluding that there is a true association in 
the population after obtaining a significant association 
in the study sample. For instance, the FPRP of the log-
rank statistical test used in study 1 is the probability 
of wrongly concluding that there is an association be-
tween doxorubicin chemotherapy and survival time for 

Table 4—Analogies between diagnostic tests and statistical tests.

Diagnostic test interpretation Statistical test interpretation

This animal has the disease There is a true association in the population (ie, the null hypothesis is false)
This animal is disease free There is no true association in the population (ie, the null hypothesis is true)
Positive test result Significant (P < α) association
Negative test result Nonsignificant (P > α) association
Se, or probability of obtaining a positive test  Probability of obtaining a significant association when the null hypothesis
  result when the animal is truly diseased   is false (ie, power or 1 – β)
Sp, or probability of obtaining a negative test  Probability of obtaining a nonsignificant association when the null hypothesis
  result when the animal is truly disease free   is true (ie, 1 – α)
PPV, or probability that an animal with a positive  Probability that the significant association obtained between the exposure and
  test result truly has the disease    outcome in the study sample truly exists in the population

PPV =
π X (1 – β)

 ([1 – π] X α) + (π X [1 – β])
(formula 3)
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dogs with presumptive cardiac hemangiosarcoma after 
obtaining a significant association in the study sample.

The formula for FPRP can be derived from for-
mula 3 as follows:

Numeric examples of FPRP values according to se-
lected values of π and (1 – β) are provided (Figure 1).

Misinterpretation of the  
Type I Error Rate and P Value

The type I error rate in statistical testing is typi-
cally set at 5% (α = 0.05), which is considered a low 
value. Many researchers wrongly believe that because 
α is low, the conclusion regarding a significant associa-
tion is accompanied by a corresponding low probability 
of error.37,38 Similarly, P values are commonly misinter-
preted as the observed probability of wrongly reject-
ing the null hypothesis, which means that researchers 
commonly and mistakenly interpret the P value as if it 
were the FPRP.39 For instance, if the P value obtained 
in study 2 is 0.03, the investigators of study 2 would 
probably conclude erroneously that there is strong evi-
dence for a true association between doxorubicin che-
motherapy and survival time of dogs with presumptive 
cardiac hemangiosarcoma, with a 3% risk of error.27,40,41 
However, the P value is actually the probability of the 
observed or more extreme results if the null hypoth-
esis is true and if no bias existed when estimating the 
association. Therefore, the P value has no meaningful 
interpretation per se because its value is conditional on 
a hypothesis that nobody knows with 100% certainty is 
true or false.42

Factors Contributing  
to a High FPRP

Formula 4 indicates that the FPRP of a statistical 
test performed in a study designed to provide evi-

dence that there is a true association between an ex-
posure and outcome depends on the type I error rate 
(α), statistical power of the study (1 – β), and a priori 
probability that the null hypothesis is false (π).

Impact of the value for type I error rate
Suppose that study 1 is designed to have 80% 

statistical power, and the a priori probability that 
the null hypothesis is false is 20% (ie, π = 0.20). If 
α is set to 1%, the FPRP calculated from formula 
4 is 5%; if α is set to 5%, the FPRP increases to 
20% (Figure 1). Therefore, and more generally, the 
higher the type I error rate is set, the higher the 
FPRP will be. This point is one of the origins of a 
scientific movement that questions the type I error 
threshold of 5% and proposes to lower it to 0.5% (α 
= 0.005).43 Nevertheless, this thinking is not shared 
by all scientists,44 and the convention for setting 
the type I error threshold at 5% is likely to persist 
for years. Consequently, an α value of 0.05 is used 
in all examples that follow.

Impact of the value  
for statistical power

Suppose again that study 1 is designed with an 
a priori probability of 20% that the null hypothesis 
is false. With a statistical power of 80% (by recruit-
ing 79 dogs/group), the calculated FPRP is 20%. 
Suppose now that the investigators are able to re-
cruit only 39 dogs/group, reducing the statistical 
power to 50%. In this new situation, the calculated 
FPRP increases to 29% (Figure 1). More generally, 
the lower the statistical power is, the higher the 
FPRP will be. Because the statistical power of a 
study is directly related to its sample size, the FPRP 
increases with decreasing sample size, indicating 
that a low statistical power (or small sample size) 
not only decreases the chance of obtaining a sig-
nificant result when there is a true association, but 
it also makes any obtained significant result more 
likely to be falsely positive.

Impact of the a priori probability  
that the null hypothesis is false

Suppose again that study 1 is de-
signed with a statistical power of 80% 
(with 79 dogs/group), with an a priori 
probability of 20% that the null hypothe-
sis is false and a calculated FPRP of 20%. 
Suppose that study 2 is also designed 
with 80% statistical power (with 40 
dogs/group), but with an a priori prob-
ability of 1% that the null hypothesis is 
false, which is low owing to the explor-
atory nature of that study. With such 
characteristics, the calculated FPRP of 
study 2 is 86% (Figure 1). More gener-
ally, the lower the a priori probability 
is that the null hypothesis is false, the 

Figure 1—Values of FPRP according to the statistical power (1 – β) of a study 
and the a priori probability that the null hypothesis (H0) is false (π) when the 
type I error rate is set at 5% (α = 0.05). The darker the shading, the higher the 
FPRP (ie, the higher the probability of wrongly concluding that there is a true as-
sociation between an exposure and outcome in the population after obtaining a 
significant association in the study sample).

FPRP = 1 − PPV =
(1 – π) X α

([1 – π) X α) + (π X [1 – β])
(formula 4)
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higher the FPRP will be, which indicates that an ex-
ploratory study with a significant association obtained 
in the study sample is more likely to wrongly lead to 
the conclusion that the association truly exists than is 
a confirmatory study. Indeed, this reasoning applies to 
diagnostic tests30,45: a diagnostic test can have excel-
lent Se and Sp but a very low PPV (and therefore a high 
FPRP) if the disease prevalence is very low. Similarly, a 
statistical test can be very sensitive (excellent statisti-
cal power) and very specific (low type I error rate); 
however, a significant association in the study sample 
would very poorly predict the existence of a true asso-
ciation in the population if the a priori probability that 
a true association exists is very low.

The most difficult component to determine 
when estimating the probability of wrongly conclud-
ing that the association truly exists in the population 
(ie, the value of the FPRP) is the a priori probability 
that the null hypothesis is false.32 An explanation of 
how this probability might be derived is beyond the 
scope of this article. Briefly, some authors suggest the 
use of reverse-Bayes reasoning,46 which consists of 
setting the statistical power of the planned study and 
the desired FPRP value, then determining whether 
the value of the a priori probability that the null hy-
pothesis is false is compatible with the current state 
of knowledge in the field.36,47

Clinical Summary
The probability of wrongly concluding that there 

is a true association between an exposure and out-
come in the population after obtaining a significant 
association in the study sample is equal to neither α 
nor the P value. Such probability (the FPRP) depends 
on the characteristics of the study, namely its statisti-
cal power and whether its purpose is confirmatory or 
exploratory, given the existing research findings on 
the subject.

In exploratory studies (ie, those involving associa-
tions that have not previously been evaluated in the 
same population), which are not uncommon in veteri-
nary clinical research, researchers cannot and should 
not be convinced that there is a true association be-
tween an exposure and outcome in the population 
after obtaining a significant association in their study 
sample. However, in a study designed to confirm a 
significant result obtained in previous high-quality 
studies, researchers can have more confidence in this 
regard. Furthermore and importantly, unless the true 
association is strong, a small sample size (which is also 
not uncommon in veterinary clinical research) nec-
essarily prevents researchers from being confident in 
their conclusions about their study sample, even after 
a significant association has been obtained.

Researchers can start to have confidence that 
there is a true association between an exposure and 
outcome in the population after obtaining a signifi-
cant association in the study sample if 1) the statis-
tical power of the study is high (at least 80%) and 
2) the existing information on the subject indicates 

that the a priori probability that this association truly 
exists is at least 20%. In such a situation, when the 
tested association is significant, the probability of 
wrongly concluding that it truly exists (FPRP) is 20%. 
One may believe that a probability of 20% is too high, 
compared with the 5% that most researchers have in 
mind when making conclusions about a significant 
association. However, to achieve an FPRP of 5% when 
a study has a statistical power of 80% would require 
that the study be confirmatory, with an a priori prob-
ability of a true association of 54% (Figure 1). Unfor-
tunately, such confirmatory studies would not likely 
be designed because researchers would then be con-
cerned that most funding sources and journals would 
prioritize other, more novel projects.3,48 This is the 
reason that confirmatory studies should be encour-
aged more than they actually are.49

Those interpreting research findings must keep 
in mind that the interpretation of the probability of 
wrongly concluding that there is a true association 
in the population after obtaining a significant one in 
the study sample assumes the absence of P-hacking, 
HARKing, biases, or any other errors in scientific re-
porting. Even in the ideal situation, the FPRP, as cal-
culated in this article and others,10,35 is still likely to be 
too optimistic47 and the true FPRP is likely to be even 
higher. Researchers and clinicians must nonetheless 
be aware that although an association might be iden-
tified as significant in a study, this is often weak evi-
dence that the association truly exists in the popula-
tion. Such awareness is a necessary step toward more 
cautious communication about the clinical relevance 
of the results of a study, potentially leading to clini-
cal decisions thereafter. More generally, it is also a 
necessary step toward better veterinary research and 
evaluation of scientific research when practicing evi-
dence-based veterinary medicine.
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