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COMMENTARY

Current approaches for mediation analysis based on natural direct and indirect effects 
differ primarily in terms of the statistical models on which they rely1:

1. �A model for the expected outcome Y, given mediator, exposure, and baseline covari-
ates (confounders) W.

2. A model for the distribution of the mediator M, given exposure and confounders W.
3. A model for the distribution of the exposure X, given confounders W.

Available approaches require correct specification for two of these three models1; the 
proposal of Albert2 in this issue of Epidemiology avoids reliance on a model for the media-
tor distribution in view of the usual difficulties in specifying it.

THE MEDIATION FORMULA
The mediation formula3 is pivotal to nearly all methods for the estimation of natural 

direct and indirect effects. This formula prescribes estimating E{Y(x,M(x′))} by standardizing 
predictions from the outcome model corresponding to exposure level x, relative to the media-
tor distribution corresponding to exposure level x′. This formula has inspired the development 
of maximum likelihood estimators, obtainable by substituting the outcome and mediator dis-
tributions by their maximum likelihood estimators under suitable parametric models4–6; some 
traditional mediation analysis approaches7 can be viewed as approximations4,5 thereof. Provided 
correct models for the outcome mean and mediator distribution, it follows that direct applica-
tion4–6 of the mediation formula (based on maximum likelihood estimators) delivers natural 
direct and indirect effect estimators that are at least as precise as those obtained through alterna-
tive approaches that avoid specification of either the outcome mean or the mediator distribution. 
The simulation study in Albert2 shows that the loss of precision can be sizeable.

As Albert2 correctly recognizes, faultless model specification may however be a 
thorny issue. When the mediator is strongly associated with exposure or confounders, then 
misspecification of the mediator’s effect on the outcome may be difficult to diagnose, and 
extrapolation bias is likely. The same is true for the exposure’s effect on the outcome when 
the exposure is strongly associated with covariates. Moreover, models for the mediator dis-
tribution can be difficult to postulate. This is especially so when the mediator is continu-
ous; its distribution is then not entirely described by its mean. However, note that it is not 
always necessary to correctly specify the entire mediator distribution for direct application 
of the mediation formula to give valid results. For instance, it suffices to correctly specify the 
mediator’s expectation when the outcome model is linear4 in the mediator; for natural indirect 
effects, this is also the case when the outcome is binary, rare, and modeled through logistic 
regression.5,8 Bearing this and the aforementioned potential for precision loss in mind, further 
simulation studies seem warranted under degrees of model misspecification that are more 
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realistic (in the sense of being difficult to diagnose or amend) 
than those described by Albert.2

ALTERNATIVE APPROACHES FOR MEDIATION 
ANALYSIS

Alternative approaches for mediation analysis substitute 
an exposure model for either the outcome or mediator model. 
These approaches, including that of Albert,2 are indicated primar-
ily when the investigator has relatively greater confidence in the 
correctness of the exposure model, as is typically the case when 
the exposure is randomly assigned. Such a priori information 
is ignored by maximum likelihood approaches because it does 
not help to increase precision, even though it partially insulates 
the results from model misspecification bias. These alternative 
approaches may be less attractive than direct application of the 
mediation formula when the exposure is continuous because this 
can make the modeling of the exposure distribution relatively 
more cumbersome; in what follows, as in the article by Albert,2 
we will therefore concentrate on dichotomous exposures.

A first class of alternative approaches avoids reliance on 
a model for the mediator distribution. Here, progress is made by 
noting that the counterfactual M(x′) equals the observed value 
M within the subgroup of individuals with exposure level x′,  
so that Y(x,M(x′)) equals Y(x,M). The expectation E{Y(x,M(x′))|X 
= x′} can therefore be calculated by predicting Y(x,M) on the 
basis of an outcome model with X set to x and with M and  
W set to their observed values, and then averaging this within 
this subgroup. Inverse probability weighting (by the reciprocal 
of P(X = x′|W)) can be used to account for the selective nature 
of subjects with X = x′, and thus to transport the results to the 
general population, ie, to calculate E{Y(x,M(x′))}. This forms 
the basis of the developments of Albert2 and Vansteelandt  
et al.9 These approaches are primarily indicated when the inves-
tigator has a priori knowledge about the exposure distribution, 
or when direct application of the mediator formula requires not 
only correct specification of the mediator’s expectation but also 
its entire distribution.

A second class of alternative approaches avoids reli-
ance on a model for the outcome mean. These approaches are 
indicated primarily with concern for extrapolation bias in the 
outcome regression model. Here, E{Y(x,M(x′))} is estimated 
as the sample average of the outcome in subjects with X = x, 
but weighting by the reciprocal of P(X = x|W) to account for  
the selective nature of those subjects, and additionally by 
P(M|X = x′, W)/P(M|X = x, W) to standardize the results to 
the mediator distribution at exposure level x′ (rather than the 
observed level x). That is, E{Y(x,M(x′))} is estimated as:

	 ∑
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This forms the basis of the developments of Hong10 and 
Lange et al.11 A limitation is that this approach can suffer more 
weight instability9 (ie, w

i
 can be highly variable individuals i) 

and that correct specification of the mediator distribution can 
be more demanding than correct specification of the outcome 
mean.

Tchetgen Tchetgen and Schpitser1 develop a so-called 
triply robust approach, which essentially combines the afore-
mentioned three approaches. It provides valid results when 
two of the three working models for the exposure, mediator, 
and outcome are correctly specified but does not require the 
user to specify which two. This approach is promising, in that 
it lessens the concern about model misspecification bias more 
than the foregoing approaches and does not require the user to 
make a specific choice of working models to rely on. However, 
the inferior performance of related strategies in simulation 
studies9 indicates that further work is needed on how to best 
fit the exposure, mediator, and outcome models before routine 
application can be advised.

MARGINAL VERSUS CONDITIONAL EFFECTS
Although the focus of Albert2 is on marginal or 

population-averaged effects, one may alternatively choose to 
focus on conditional natural direct and indirect effects4,5,9,12: 
E{Y(x,M(x′))−Y(x′,M(x′))|W} and E{Y(x,M(x))−Y(x,M(x′))|W}, 
where W includes all confounders. When W is discrete with 
few levels, these effects can be estimated by applying the above 
approaches with each stratum separately. In general, some 
form of modeling is required to allow for the borrowing of 
information across strata. This can, for instance, be performed 
through the so-called natural-effect models9,11 of the form:

	 E{Y(x,M(x′))|W}= β
0
+β

1
x+β

2
x′+β

3
W,	 (3)

where β
1
 and β

2
 capture the natural direct and indirect effect 

of exposure on outcome. These can be estimated using a 
regression imputation9 approach that is closely related to the 
approach of Albert2 in this issue of Epidemiology. In particu-
lar, the counterfactuals Y(0,M(X)) and Y(1,M(X)) can be pre-
dicted on the basis of the outcome model with X set to either 0 
or 1, and with the mediator and covariates set to their observed 
values. Let Y* denote these predictions and let X* be an artifi-
cial exposure variable, which correspondingly assigns 0 or 1 
to these predicted values. Model (3) can then be fitted through 
the corresponding standard regression model:

	 E(Y*|X,X*,W) = β
0
+β

1
X*+β

2
X+β

3
W.	 (4)

By controlling for confounders directly in the outcome 
regression model, one thus avoids the need for inverse weight-
ing by the exposure distribution. Further advantages are that 
natural-effect models allow the analyst to study effect modifi-
cation by covariates, and the borrowing of information across 
strata can deliver more powerful results. A possible limitation, 
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particularly germane to nonlinear models, is that the outcome 
model and the natural-effect model (3) may be mismatched.9 
However, this may be less of a practical concern if one con-
siders the natural-effect model as a convenient summary for 
reporting. Moreover, it can be shown that misspecification 
of linear natural-effect models does not bias tests of the null 
hypothesis of “no direct effect,” and when X is linear in W, it 
also does not bias tests of the null hypothesis of “no indirect 
effect.” Vansteelandt and Keiding13 provide further discussion 
on marginal versus conditional effects.

CONCLUSION
In summary, Albert2 nicely combines regression mean 

imputation and inverse probability weighting ideas to infer 
natural direct and indirect effects. His proposal is indicated 
primarily when prior knowledge is available on the exposure 
distribution (eg, that the exposure is randomly assigned), or 
when direct application of the mediation formula requires a 
model not only for the mediator’s expectation but also for its 
entire distribution. His proposal might imply an important 
precision loss relative to direct application of the mediation 
formula or other more efficient estimation approaches,1,9 espe-
cially when the exposure is continuous or has strong predic-
tors. In such settings, one can avoid inverse weighting by the 
exposure distribution and the need for modeling the mediator 
distribution, by focusing on conditional effects under the so-
called natural-effect models.9
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