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Sample size formulas for estimating
intraclass correlation coefficients with
precision and assurance

G.Y. Zou*"

The number of subjects required to estimate the intraclass correlation coefficient in a reliability study has usually
been determined on the basis of the expected width of a confidence interval. However, this approach fails to
explicitly consider the probability of achieving the desired interval width and may thus provide sample sizes that
are too small to have adequate chance of achieving the desired precision. In this paper, we present a method that
explicitly incorporates a prespecified probability of achieving the prespecified width or lower limit of a confi-
dence interval. The resultant closed-form formulas are shown to be very accurate. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. Introduction

Unreliable measurements can have serious consequences in medical research. Reliability studies are
therefore often conducted to assess the metric properties of observers or test methods in terms of repro-
ducibility and level of agreement. For quantitative observations, the intraclass correlation coefficient
(ICC), defined as the proportion of all variation that is not due to measurement error, is a widely used
index for quantifying the extent of the reliability [1-3]. The interpretation of the ICC, denoted here as p,
is often facilitated using the Landis and Koch [4] benchmarks that p < O reflects ‘poor’ reliability, O to
0.20 ‘slight’, 0.21 to 0.4 “fair’, 0.41 to 0.60 ‘moderate’, 0.61 to 0.8 ‘substantial’, and above 0.81 ‘almost
perfect’ reliability.

As with any scientific investigation, an essential step in conducting a reliability study is the calculation
of a minimum sample size that will meet the given objective of the study. A study that is too large may
waste resources, whereas a study that is too small will have little chance of meeting the study objective.
Two general approaches have been adopted to estimate the sample size for reliability studies. From a
hypothesis testing perspective, Donner and Eliasziw [5] have provided power graphs for selected num-
bers of raters and subjects. To broaden the application and simplify calculations involving numerical
integration of incomplete beta functions, Walter et al. [6] provided a closed-form approximation to these
results on the basis of the Fisher transformation.

The second approach to sample size estimation focuses on the precision of estimating the ICC, as
quantified by the expected width of the confidence interval [7, 8]. This approach seems to be consis-
tent with the current trend towards using confidence intervals to present study results. However, it is
well known that methods based on expected interval width can underestimate the sample size needed
to have an adequate chance of achieving the desired precision [9-12]. Sample size estimation proce-
dures that incorporate assurance probability for estimating normal means have been proposed [11] and
implemented in standard statistical procedures such as SAS 9.2 proc power (SAS Institute, Cary, NC,
USA). Additional examples include sample sizes for odds ratios [13, 14], multiple comparisons of normal
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means [15], and single proportions [16]. The lack of a closed-form expression is a common feature of
these procedures.

The purpose of this paper is to derive and evaluate simple sample size formulas for planning reliability
studies focusing on the estimation of the ICC. In contrast to approaches currently available in the lit-
erature [7, 8], we explicitly incorporate a prespecified assurance probability of achieving the desired
precision. It is shown that our results reduce to those obtained by Bonett [8] when the chance of achiev-
ing the interval width is set to 50%. We also show that the sample size formula based on the lower
confidence limit is identical to that obtained using the approach of Walter et al. [6] when power is
regarded as the assurance probability.

Section 2 first describes the model for point and confidence interval estimation of the ICC and then
derives sample size formulas on the basis of the desired width and lower limit of the confidence interval
for p, respectively. Section 3 reports on a simulation study evaluating the performance of the formulas.
In particular, we first use the derived formulas to obtain sample sizes needed to achieve prespecified
precision and prespecified assurance and then use a simulation study to evaluate the performance of
the exact confidence interval procedure in terms of empirical coverage and the percentage of times the
prespecified precision has been achieved. In Section 4, we illustrate the calculations involved by using
published examples [8]. The paper closes with a discussion.

2. Methods

2.1. The model and the confidence interval estimators

Suppose that k observations are made on each of N subjects randomly drawn from some population of
interest. Suppose further that the jth (j = 1,2,..., k) observation, Y;;, for subjecti (i =1,2,...,N)
can be modeled as

Yij =p+ai +ey,

where p is the overall mean, a; are random effects, which are assumed to follow a normal distribution
with mean 0 and variance 02, and ¢;; are measurement errors, which are assumed independent of a; and
normally distributed with mean 0 and variance o2. The ICC (p) is defined as the ratio of the variability
between subjects to the total variability, that is,

0'2

_ a
P 02 +0?
Note that this model can also be applied when each subject is observed repeatedly on each of several
occasions for test—retest reliability. Throughout this paper, we focus on using the analysis of variance
approach to estimation p, given by

MSB — MSE
MSB + (k — 1)MSE’

=
where MSB and MSE are the between-subject and within-subject mean squared errors, respectively. The

large sample variance for p is given [17] by

G) = 2(1 = p)*[1 + (k = 1)p]?
WP = k—)WN=1)

which can be consistently estimated by substituting p for p. Thus, a large sample (1 —a)100% two-sided
confidence interval is given by

P F Zas2 vV Var(p). 6]

where and throughout the paper z/» is the upper /2 quantile of the standard normal distribution. This
procedure is usually referred to as the Wald method. Alternatively, one can obtain an exact confidence
interval by noting that

P MSB _ L+ (—1p
P=MSE™ 1-%
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is distributed as an F-distribution with degrees of freedom of N — 1 and N(k —1). Specifically, an exact
(1 — «®)100% two-sided confidence interval (/, u) is given by
F/F,—1 F/F—1
ki u = 9 b
F/F,+k—1  F/Fi+k—1

2

where F; and F), are the /2 and the 1 — «¢/2th quantiles of the F-distribution with degrees of freedom
N — 1 and N(k — 1), respectively. Note that because there is no approximation involved, this proce-
dure may be regarded as the standard procedure under the assumptions described previously for the
one-way random effects model. This is also different from ‘exact’ procedures for discrete data such as
the Clopper—Pearson procedure for a single proportion [18], which has been shown to be conservative
because of discreteness [19].

One can also apply the Fisher transformation that 0.51n F(p) follows approximately a normal
distribution with mean 0.5 In F'(p) and variance 012, where

5 1
Of X - .
2(k —1)(N —=1)
The confidence limits for p are obtained by first setting confidence limits for 0.5 In F', that is,

1+ (k-1
ab—05m KD La/2

1—=p V2—=D((N -1)

which yields confidence limits for p given by

exp(2a) — 1 exp(2b) — 1 3)
= U= — .
expa) + k—1 exp(2bh) + k—1
Note that among the three procedures presented previously, the procedure in Equation (1) is the
simplest but may not perform well in small samples, primarily because p has a left-skewed sampling
distribution. Thus, either the exact procedure in Equation (2) or the Fisher transformation-based interval
in Equation (3) is commonly recommended for data analysis.
Finally, a referee has kindly suggested two new approximate confidence interval procedures. The first
is analogous to the Wilson score interval for a proportion, comprising all values of p satisfying

- 2(1—=p)2[1 + (k —1)p]?
[0 —pl < Zas2 .

k(k—1)(N — 1)

The second procedure entails obtaining confidence interval for p through 03 /o2 by applying the method
of variances estimates recovery [20,21] to a ratio [22]. Because neither method has been fully evaluated,
we leave these methods for future research.

2.2. Sample size estimation based on the width of the Wald interval

It is generally desirable to derive the sample size precisely on the basis of procedures that would be used
for data analysis. However, in the present context, the interval width from the exact procedure and the
Fisher z-transformation cannot be expressed as a simple function of the sample size N. Therefore, we
proceed with the large sample confidence interval procedure for simplicity. This is similar to the case of
the difference between two binomial proportions where sample size estimation is usually based on the
Wald procedure, but method 10 of Newcombe [23] is recommended for data analysis.

Our goal here is to have N large enough to ensure that the half width of a (1 — «)100% two-sided
confidence interval is no larger than a prespecified width @ with a prespecified assurance probability
1 — B. Specifically, we need

1-B=Pr (Za/z Vvar(p) < a)) ) “4)
Let

~2(1=p)?[1 + (k= D)p]?
B k(k —1)

Sf(p)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3972-3981



Statistics

G. Y. ZOU

Equation (4) implies that

1—B8=Pr (za/z /) < a))

N —1

:m( ) <2 N—Q.

Za/2

To obtain IV, an asymptotic distribution for v/ f(p) is needed. By the delta method, we have

=\ _ ()
Var( f(p)) 2N 1)
where f’(p) is the first-order derivative of f(p) with respect to p, given by

4(1 = p)[1 + (k = Dpllk —2 +2p — 2kp|
k(k —1) ‘

f'(p) =

By the central limit theorem, we have

/ 2
JI®) ~ N [mp), M] .

2(N —1)

Thus, we have, asymptotically,

1—B =P (Z < @/Zap VN -1 \/f(p))
/" (0)l/ V2(N = 1)

which gives

/"] _oVN-1 7o)
V2(N =1) Za/2 ’

where zg is the upper B quantile of the standard normal distribution. Solving for /N — 1 and squaring
the admissible solution, we obtain

N=1+

(VTP + VTP + 2251 D)@/ zarz |
26‘)/Z-w/z

2

AzZg/o + \/Azzi/z +4wzy/22pA|B]

=1+ ; (5)
w+/2k(k —1)
where | B| is the absolute value of B,
A=(1—-p)[l+(k—1)p] and B=k—2+2p—2kp.
Note that, for 8 = 0.50 so that z g = 0, the formula reduces to
222 ,(1=p)[1 + (k = Dp]?
N =14 %2 6)

k(k — Dw? ’

which can be recognized as that obtained by Bonett [8] with w being the half-interval width. Note also
that for given values of p, w, and N, the assurance probability 1 —f can be obtained using the expression

_ V20(N =1)/zaj2 =2(1=p)[1 + (k = p]VN —1
p= lk —2 +2p —2kp| '
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2.3. Sample size for achieving a prespecified lower limit of asymmetrical interval procedure

Rather than focusing on the width of confidence interval, an investigator may be more concerned that
the reliability coefficient is not less than a prespecified value, pg. This is reasonable if the primary objec-
tive of the study is to determine whether the ICC is of acceptable magnitude for the purpose at hand.
Although it may not be easy to specify po in general, the benchmarks provided by Landis and Koch [4]
can be adopted here. Thus, we wish to derive a solution to

1 =B =Pr(pL = po).

We now apply the approach based on the Fisher transformation, because this procedure performs better
than the Wald method presented in Equation (1). Thus, we have

1—B=Pr[0.5In F(pr) = 0.5In F(po)]

=Pr |:O.51n F(p) —zay/02=0.51n F(po)j|

~ F(p) _ k
p 0.5In F(p) —0.5In F(p) _ 0.51n F(;ﬁ)) ey 2D N-D
=rr

= RS

o2

/ k
z 2(—1)(N—1)

Thus, we have

k _1 FQ) k
N2V =1~ 2 " Flpo) *\V2k—DN-1)
Solving for N yields
2(za + 25)%k
{In[F(p)/ F(po)] 2k — 1)

which is equivalent to that given by Walter ef al. [6] who derived the formula from a hypothesis testing
perspective. Previous authors have not recognized this equivalence [7, 8]. Again given values of p, po,
and N, the assurance probability is readily available, because

__ [G=D=D Fp)
a 2% F(po)

In addition, it is straightforward to derive the achievable lower limit for given values of N, p,k,«,
and B. Let

N=1+ )

Lo =InF(p) — _fatip
[ (k—1)(N—1)
2k
The achievable lower limit pg is given by
exp(Lo) — 1

®)

o= exp(Lo) +k—1°

3. Evaluation

Because the formulas in Equations (5) and (7) rely on asymptotic theory for their validity, we evaluated
their accuracy in finite samples with the use of simulations, where, without loss of generality, we only
consider the parameter value o = 0.05. We performed the simulation study with the use of proc iml
in SAS Version 9.2 software.

To evaluate the formula for given confidence interval width, we first used Equation (5) to obtain the
required sample size N for a prespecified combination of p, k, ®, and 8 and then randomly generated
10,000 datasets of size N from a multivariate normal distribution (With 10,000 simulation runs, we con-
sider empirical coverage percentage for a 95% confidence interval falling into the range between 94.6%
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and 95.4% to be acceptable.) We then calculated the two-sided 95% confidence limits for each dataset
with the use of Equation (2). Finally, we estimated the empirical coverage as the proportion of the 10,000
confidence intervals that contained the parameter value of p and calculated the empirical assurance prob-
ability (EAP) as the proportion of the 10,000 interval half widths that were less than w. We considered
p=0.6,0.7,and 0.8, k =2,3,5,and 10, w = 0.1 and 0.15, and 8 = 0.5,0.2, and O.1.

We used similar steps to evaluate formula (7) for estimating p with a prespecified lower limit. We
considered similar parameter combinations, with the exception of defining po to be smaller than the
selected values for p by 0.10 and 0.15.

Results in Table I show that the empirical coverage percentages (ECP) are very close to the nomi-
nal level of 95%. This is because the exact confidence interval for p based on the F-distribution does
not involve any approximation. As expected, the sample sizes based on Equation (6) can only provide
around a 50% assurance probability of achieving the desired precision. We can also observe that the
EAPs are in reasonable agreement with the nominal levels, with EAP slightly lower than the nominal
when the number of raters is 2 or 3. The suboptimal EAP is due largely to the use of the Wald confidence
interval procedure in the derivation. However, we should not use the same restrictive criteria to interpret
empirical coverage probability and EAP, because of the approximation nature in sample size planning.

Results in Table II show that the formula in Equation (7) for prespecified lower limits is very accurate
in achieving the nominal assurance probability. This is likely because the formula is derived on the basis
of the Fisher transformation for constructing a confidence interval for p, which is known to perform well.

Table I. Performance of the sample size formula (5) for number of subjects N required to ensure that the
half width of a 95% two-sided confidence interval for p is no greater than w with 50%, 80%, and 90%
assurance probabilities.

50% Assurance 80% Assurance 90% Assurance
) w k N ECPT  EAP* N ECP EAP N ECP EAP
0.60 0.10 2 159 95.17 49.87 183 95.17 79.77 196 95.28 90.84
3 101 94.69 53.42 114 95.18 83.64 120 94.95 92.02
5 73 94.94 58.86 80 95.06 84.92 84 94.78 94.54
10 57 95.00 55.96 63 94.88 91.37 65 94.96 97.68
0.15 2 71 94.85 49.24 87 95.06 80.34 95 95.50 90.26
3 46 95.09 56.52 54 95.05 84.07 58 95.16 93.55
5 33 95.30 58.64 38 9491 88.88 41 94.83 98.64
10 26 95.24 60.35 30 95.16 100.0 31 94.93 100.0
0.70 0.10 2 101 94.90 47.19 124 94.62 78.72 135 95.06 89.30
3 68 95.05 51.81 81 95.01 80.21 88 94.63 90.54
5 51 94.96 53.50 61 95.17 84.01 65 94.74 91.29
10 42 95.07 54.04 50 95.21 86.55 53 94.82 93.33
0.15 2 46 95.35 47.20 61 95.29 79.70 68 95.29 89.66
3 31 95.42 52.03 40 95.24 83.14 44 95.00 90.97
5 24 94.94 57.54 30 95.21 86.14 33 94.96 94.28
10 20 94.58 60.36 24 95.43 86.40 27 94.93 96.52
0.80 0.10 2 51 94.97 44.96 69 94.84 75.96 77 94.97 86.91
3 36 94.77 49.82 48 94.60 79.22 54 94.90 89.27
5 29 94.69 52.93 37 95.00 79.35 42 94.83 90.44
10 24 94.94 52.20 32 95.14 83.73 35 95.43 90.62

0.15 2 24 94.85 45.02 35 95.01 74.84 41 95.29 87.00

3 17 95.23 48.86 25 94.75 80.67 28 95.13 88.38
5 14 94.92 56.55 19 94.83 80.63 22 94.84 90.71
10 12 95.39 58.42 16 95.24 81.47 19 95.15 92.72

TEmpirical coverage percentage (ECP) based on 10,000 simulation runs.
*Empirical assurance (EAP) defined as percentage of times that the half width of the two-sided 95% confidence interval
is no greater than w.
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Table II. Performance of the sample size formula (7) for number of subjects N required to ensure that
the lower limit of a 95% one-sided confidence limit for p is no less than pp with 50%, 80%, and 90%

assurance probabilities.
50% Assurance 80% Assurance 90% Assurance
) 00 k N ECPT  EAP* N ECP EAP N ECP EAP
0.60 0.50 2 132 95.15 49.16 300 95.16 79.34 415 95.05 90.21
3 32 94.89 51.67 184 95.15 80.28 255 95.01 90.36
5 57 94.78 51.89 129 95.38 80.45 178 95.16 89.87
10 44 95.01 53.06 99 94.99 81.11 137 94.79 90.23
0.45 2 64 94.96 50.20 144 94.78 80.82 199 95.22 90.19
3 39 95.27 52.26 87 94.81 81.07 120 94.65 90.26
5 27 94.87 53.77 60 95.46 80.93 83 94.91 90.13
10 21 94.96 54.09 46 95.27 81.42 63 94.48 89.86
0.70 0.60 2 91 95.10 49.47 205 95.29 80.11 284 94.89 90.28
3 59 94.85 52.18 134 94.78 80.21 184 95.51 90.40
5 44 94.92 53.01 99 9491 81.48 136 94.97 90.34
10 36 94.96 54.33 30 95.14 81.05 110 94.88 90.18
0.55 2 45 94.89 49.63 101 95.38 79.77 140 94.65 89.74
3 29 95.18 51.97 65 94.86 80.79 90 95.14 90.70
5 22 94.57 53.92 48 95.15 81.65 66 94.74 90.21
10 18 95.05 55.78 38 94.99 81.25 53 95.20 90.88
0.80 0.70 2 52 94.96 49.45 117 95.33 79.45 162 95.04 89.72
3 36 95.00 51.22 80 95.27 80.59 110 95.06 90.27
5 28 94.79 54.46 62 95.14 81.23 85 94.86 90.63
10 24 94.91 55.38 52 94.98 81.37 71 94.83 90.23
0.65 2 27 94.74 50.58 61 94.90 80.35 83 94.94 89.32
3 19 94.88 52.97 41 95.07 80.91 57 95.01 90.78
5 15 94.99 55.08 32 94.86 82.14 44 95.09 90.51
10 12 95.32 54.58 27 95.27 82.15 36 94.62 90.45

TEmpirical coverage percentage (ECP) based on 10,000 simulation runs.
*Empirical assurance (EAP) defined as percentage of times that the lower limit of one-sided confidence interval is no
less than pg.

4. Worked examples

As an illustration, we now reconsider the examples given by Bonett [8] who intended to highlight the
advantage that his sample size formula is more robust to different values of p than the formula by Walter
et al. [6]. Bonett [8, p. 1335] stated that

A planning value of p is needed for sample size determination in both hypothesis testing and interval
estimation application but the effect of an inaccurate planning value is more serious in hypothesis applica-
tions. For instance, to test Hp : po = 0.7 at « = 8 = 0.05 with k = 3, the required sample size is about 3376,
786, 167 for p1 = 0.725,0.75 and 0.8, respectively. In comparison, the sample size required to estimate p;
with a 95% confidence interval width of 0.2 is 60, 52 and 37 for p; = 0.725,0.75 and 0.8, respectively.

Even though it has found its way into textbooks (e.g., [24]), this comparison is misleading for several
reasons. First, in light of our results, the former set of sample sizes provide an assurance probability of
95%, whereas the latter sizes only have 50% assurance probability. Second, all the lower limits for the
former cases were set at 0.7, whereas for the latter, the sample sizes are for lower limits of 0.625, 0.65,
and 0.7, respectively. Third, the former sample size estimation takes into account the skewness of the
sampling distribution of the ICC, whereas the latter method treats it as symmetric.
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Suppose now we wish to ensure, with 80% probability, that the lower limit of the one-sided 95%
confidence interval is no less that 0.7 when the anticipated value of p is 0.725. Then, by Equation (7),
the number of subjects we need is

2(1.645 4 0.84)% x 3

2
14+(3-1)0.725 / 14+(3-1)0.7
[ln o725 /1207 ](3_1)

N=1+ ~ 1601.

Similar steps result in sample sizes of 374 and 80 for p = 0.75 and 0.8, respectively. In the second
half of the comment, Bonett [8] referred to the sample size requirements for lower limits of 0.725, 0.75,
and 0.80. According to formula (7), the sample sizes are 120, 107, and 80, respectively. Note that these
are not as dramatic as claimed [8], although they are materially different from the respective sample
sizes of 60, 52, and 37, given by Bonett [8] who implicitly assumed 50% assurance probability. For
80% assurance probability, when p = 0.725, with N = 60 and k = 3, the achievable lower limit py is,
by Equation (8),

Lo)—1
po = M =0.577.
exp(Lo) +k —1
where
1+ (3—1)0.725 1.645 + 0.84
Lo =1In —

1-0.725 JB=1)(60—1)/6 ~

With Equation (5), we know that, with 50% probability, ‘the sample size required to estimate p; with
a 95% confidence interval width of 0.2 is 60, 52, and 37 for p; = 0.725,0.75, and 0.8, respectively.’
Suppose we wish to increase the assurance probability from 50% to 80%. With Equation (5) applied, the
required sample sizes are 73, 65, and 48, respectively.

5. Discussion

It has now been suggested that reliability studies be reported following a set of guidelines [25]. Among
them are the justification of sample size and the presentation of results using confidence intervals. A
variety of confidence interval procedures for ICCs are now available [2, 3], but there is a paucity of
sample size formulas. In the study design stage, one could use the formula derived from the hypoth-
esis testing prospective by Walter ef al. [6], but it may give an impression that using the formula is
somewhat inconsistent with confidence interval estimation. The popular alternative would then be the
formula suggested by Bonett [8], but as we have shown in this paper (Table 1), this practice results in a
chance of about 50% of achieving the desired precision. This is analogous to designing a study with 50%
power. The problem of planning sample sizes on the basis of expected confidence interval width has long
been recognized [9, 10]. Until now, there has been little work carried out for reliability studies to avoid
this problem.

This paper has presented simple formulas for the calculation of the required number of subjects for
a given number of observations per subject that is needed for estimating the ICC with desired precision
based either on interval width or lower limit. In contrast to previous formulas that ignore the stochastic
nature of confidence limits [7, 8], our approach treats interval width and lower limit as random variables
and thus explicitly incorporates a desired assurance probability. We have also shown that a previous sam-
ple size formula derived from a hypothesis testing perspective can be used for estimating the lower limit,
especially when the Landis—Koch benchmarks are adopted for specifying acceptable levels of reliability.

The sample sizes based on our formulas can be substantially larger than those without explicitly
considering the assurance probability [8]. However, we believe that our approach is more appropriate,
because in the planning of a study, it is important to assure that there is a high chance of achieving the
desired precision. In the case of a sample size that is too large from a practical standpoint, one may con-
sider the possibility of reducing confidence level or precision but not the assurance probability, otherwise
it would result in a false sense of assurance.

We derived the formulas by assuming a fixed number of raters for two reasons. First, the number
of subjects plays a much higher role in determining the precision of the estimation. Second, the same
principle used here can be followed if a formula for the number of raters is deemed necessary.
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As discussed previously in the literature [5, 6], the method used here is simplified by adopting a
one-way random effects model in which the subject is the only factor considered. In some situations,
it might be more appropriate to allow for both subject and rater effects with a two-way random effects
model. Application of our formulas in such situations would, in general, result in an overestimation
of sample size. More accurate formulas for the two-way random effects model may be derived by
following the same principles here but requiring prespecification of the magnitude of the rater effect.
Because a conservative sample size may not necessarily be a serious drawback in the design stage of
a study, we concur with Walter et al. [6] that sample size formulas based on a one-way model can be
useful even in the context of a two-way model, especially when the rater effect is not expected to be
very large.
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