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SUMMARY

A method is developed to calculate the required number of subjects k in a reliability study, where reliability
is measured using the intraclass correlation o. The method is based on a functional approximation to earlier
exact results. The approximation is shown to have excellent agreement with the exact results and one can use
it easily without intensive numerical computation. Optimal design configurations are also discussed; for
reliability values of about 40 per cent or higher, use of two or three observations per subject will minimize
the total number of observations required. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reliability studies are often used to evaluate the measurement properties of human observers or
a test method. For instance, one may wish to assess the consistency of different clinicians in rating
the functional status of their patients. In particular, we consider here studies where the intraclass
correlation is used to measure reliability.

Following the notation of Donner and Eliasziw,1 we suppose that n observations are made on
each of k subjects, and that the jth observation ½

ij
for subject i (i"1, 2,2 , k; j"1, 2,2 , n) is

½
ij
"k#a

i
#e

ij

where the random subject effects a
i
are normally distributed with mean 0 and variance p2

A
, or

N(0, p2
A
), the measurement error e

ij
are N(0, p2e ), and the a

i
and e

ij
terms are independent. We

assume the subjects are randomly sampled from some population of interest. The intraclass
correlation is defined as o"p2

A
/(p2

A
#p2e ).

We emphasize designs where the k subjects are each rated by the same n raters (for inter-rater
reliability). The same approach can, however, also be adopted when a single subject is observed
repeatedly on each of several occasions (test—retest reliability), or when replicates of different
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types of measurement are obtained at different times.2 In each of these cases, o can be estimated
from a suitable one-way ANOVA. (We consider the possibility of using a two-way ANOVA in
our Discussion). Higher values of o indicate greater reliability, in the sense that the measurement
error is small relative to the between-subject variability. Guidelines for acceptable values of
o have been proposed.3

Donner and Eliasziw have provided contours of exact power for selected values of k and n. The
power results were also used later4 to identify optimal designs that minimize study costs.
The power calculations are based on numerical integration of incomplete beta functions, and the
optimality results involve empirical fitting of polynomial regressions to the power contours, in
conjunction with Lagrange multipliers to identify the optima.

The number of replicates n is often limited because of practical or logistical constraints. For
example, in the study that motivated this work, physiotherapists were required to evaluate the
gross motor function of children with Down’s syndrome, using video tapes. Geographical
constraints, respondent burden and other practicalities of scheduling meant that it was not
possible to arrange for more than three or four therapists to assess a given child. Had live
observations been made, it would have been unreasonable to increase the numbers of observers
beyond this point, because of likely intimidation of the subject, particularly since assessments are
often done in the child’s home. Also, repetitive observations would probably lead to fatigue and
undesirable learning or aversion effects. Similar considerations apply in many reliability studies,
and n is typically limited by a maximum tolerable respondent burden, such as in an interview or
physical assessment of clinical status.

In this paper, we develop a simple approximation that allows the calculation of required
sample size for the number of subjects k, when the number of replicates n is fixed. The
approximation uses a single formula, and avoids the intensive numerical work needed with the
exact method. Furthermore, it permits the investigator to explore design options for parameter
values not included in the figures provided by Donner and Eliasziw, such as for various settings of
power. We are also able to identify optimal designs, where the total number of observations is
minimized.

Use of the approximating formula for k also avoids another practical difficulty associated with
use of the earlier exact results. For many designs of practical interest, the power contours do not
clearly distinguish relevant design parameters, particularly when n is small. For typical values of
n in the range 2—5, the power contours are essentially flat for a wide range of values of k, so visual
identification of an efficient design is difficult.

Numerical comparisons of the approximate results with the exact results of Donner and
Eliasziw show excellent agreement, suggesting that the approximate method can be recommen-
ded for practical use in the design of reliability studies.

METHOD

We consider a test of the null hypothesis H
0
: o"o

0
, where o

0
is a specified value of o. In the

context of assessing reliability, o
0

would typically not be 0, because zero reliability is of no
practical interest and is implausible anyway; here we would take o

0
to be the minimally

acceptable level of reliability. In other situations, for example with cluster sample data, there may
be interest in testing H

0
:o"0. The alternative hypothesis is H

1
:o'o

0
. H

0
is tested using

MS
A
/MSe"[1#(n!1)r]/(1!r) from the ANOVA, where MS

A
and MSe are the mean squares

for subjects and error, respectively, and where r"(MS
A
!MSe)/[MS

A
#(n!1)MSe] is the
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sample estimator of o. The critical value for the test statistic is CFa ; l1 , l
2
, where

C"1#[no
0
/(1!o

0
)] and Fa ; l1 , l

2
is the 100(1!a) per cent point in the cumulative

F-distribution with (l
1
, l

2
) degrees of freedom, and where

l
1
"k!1 (1)

and
l
2
"k(n!1). (2)

As described by Donner and Eliasziw,1 at o"o
1

(where o
1

is a specific underlying value of
o under H

1
), the test of H

0
has power

1!b"PrMF*C
0
Fa ; l1 , l

2
N (3)

where b is the type II error and C
0
"(1#nh

0
)/(1#nh), with h

0
"o

0
/(1!o

0
) and h"

o
1
/(1!o

1
). To solve (3), we note that if F has an F-distribution on (l

1
, l

2
) degrees of freedom,

then Fisher’s transformation5 z"1
2

lnF is distributed approximately as N(k
z
, p2

z
), where
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z
"
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1
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Substituting from (1) and (2) into (4) and (5) gives

k
z
"

(2k!kn!1)

2k (k!1)(n!1)
(6)

and

p2
z
"

(kn!1)

2k(k!1)(n!1)
. (7)

Fisher’s transformation has been suggested to be most accurate for large l
1

and l
2
, which, from

(1) and (2), here implies large values of k. As shown later, the approximation is also adequate for
smaller values of l

1
and l

2
that correspond to designs of practical interest.

Let z* be the critical value of z. Then

z*"
1

2 A
1

l
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1
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where ºa is the 100(1!a) per cent point in the cumulative unit normal distribution. From (3)

1!b"Pr[F*C
0
exp M2z*N]. (9)

Combining equations (6)—(9), we have

C
0
expC

(2k!kn!1)

2k(k!1)(n!1)
#2ºaA

(kn!1)

2k(k!1)(n!1)B
1@2

D
"expC

(2k!kn!1)

2k(k!1)(n!1)
!2ºbA

(kn!1)

2k(k!1)(n!1)B
1@2

D
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which after simplification gives

2(ºa#ºb)2 (kn!1)

k(k!1)(n!1)
"(!lnC

0
)2. (10)

If k is large, we can replace the factor (kn!1)/k by n in (10), which then gives

2(ºa#ºb )2 n

(k!1)(n!1)
"(!lnC

0
)2. (11)

After rearrangement (11) can be solved for k as

k"1#
2(ºa#ºb)2 n

(lnC
0
)2 (n!1)

. (12)

If the values of a and b have been fixed, and the other parameter values (o,o
0

and n) have been
selected, all the quantities on the right hand side of (12) are known, and the required number of
subjects k can be calculated.

The case of n"2 also deserves special attention, as occurs with test—retest data. Fisher6
suggested that, for the transformed intraclass correlation z"1

2
ln[(1#r)/(1!r)], the

variance should be taken as 1/[k!3/2] instead of the usual value 1/[k!3] for interclass
correlations with n'2. If one substitutes p2

z
"1/[k!3/2] into (5) and uses a derivation similar

to before, one obtains a modified version of (12) with leading term 3/2 instead of 1; so use of
Fisher’s modified variance leads to an increase of 0·5 in the required value of k. Note also that
substitution of n"2 into (8) gives p2

z
"1/[k!Mk/(2k!1)N], or approximately 1/[k!1/2] if k is

large.
The accuracy of the approximate formula (12) was verified against the values used to generate

the exact power curves.1 The exact calculations were made by selecting particular integral values
of n and then determining k (non-integral) to satisfy the power requirements, at selected values of
o
1
, o

0
, a and b; we took ºa"1·6449 and ºb"0·8416. We then used (12) to determine an

approximate solution k
!11309

, and compared it to kexact used in the previous calculations. We also
considered the accuracy of (12) using the modified variance 1/[k!3/2] when n"2, correspond-
ing to the classical form of Fisher’s transformation.

RESULTS

Table I shows specific numerical checks on the approximation, indicating very close agreement of
the approximate and exact results over a wide range of values of o

1
, o

0
and n. More extensive

evaluation of the approximation, based on the 647 combinations of o
1
, o

0
and n used to generate

the exact power curves in Donner and Eliasziw,1 revealed that kapprox!kexact had a median of 0·16
and a range from !0·40 to 2·08. Only 27 per cent of these differences were negative. We conclude
that the approximation can be used with some confidence in the design of actual studies, and that
its bias is typically small and conservative.

For the case n"2, we considered all combinations of o
0
"0(0·2)0·6 and o

1
"0·2(0·2)0·8 with

o
1
'o

0
. The median value of kapprox!kexact#0·5 (incorporating Fisher’s modification to the

variance) was 0·22, and the range was 0·18 to 0·28. Thus the modified approximation appears to
work well in this case, giving values of kapprox that are again conservatively large.
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Table I. Selected comparisons of approximate and exact methods
for computing sample size k (a"0·05, b"0·20)

o
0

o
1

n k
!11309

k
%9!#5

Difference

0·0 0·2 20 5·05 5·00 0·05
0·0 0·4 10 4·31 4·30 0·01
0·0 0·4 3 16·37 16·06 0·31
0·0 0·6 2 13·87 14·13 !0·26
0·0 0·8 10 2·00 2·20 !0·20
0·2 0·6 2 26·71 26·99 !0·28
0·2 0·8 2 8·70 8·94 !0.24
0·4 0·6 5 35·05 34·01 1·04
0·8 0·9 10 22·61 21·72 0·89

k
%9!#5

was obtained from the Donner and Eliasziw tables. kapprox was
calculated from equation (12)

Table II shows required values of k for typical values of n, and according to the values of o and
o
0
. (The values for n"2 incorporate the 0·5 modification.) For example, suppose it has been

decided that three replicates per subject are possible, and o
0
"0·4, o

1
"0·6, a"0·05 and

beta"0·2; then we require k"51·5 subjects, or 52 after rounding up.
The results in Table II indicate that the required sample size k depends critically on the values

of o
1

and o
0
, and on their difference in particular. So, for instance, considerably more effort is

required to distinguish o values that differ by 0·1 compared to those with a difference of 0·2. Note
also that larger samples are required in association with relatively small values of o, for a given
difference o

1
!o

0
.

Table III builds on these results by showing the optimal values of n, so that the total number of
observations kn is minimized. These figures were derived by empirical inspection of the values of
kn derived from (12), over a range of values of n, until the optimum was found. (Note that these
optima pertain only to the situation where a"0·05 and b"0·20.)

Table III indicates that smaller numbers of observations per subject are required if
o
1

and o
0

are relatively large. In particular, for the range of reliability values likely to be of
interest for many clinical measurement methods (say 0·5 or higher), the optimal value of n is
between 2 and 5. Furthermore, if the minimally acceptable level of o (that is, the value o

0
defining

H
0
) is at least 0·4, then at most three measurements per subject are required, which often is

achievable within the practical constraints of the study. Only if reliability is low and o
1
!o

0
is

small does the optimal design specify a high value for n. If large numbers of replicates per subject
are unattainable, one needs to adopt a sub-optimal design with a larger total number of
observations.

Table IV shows the adequacy of the approximate optimal solutions, compared to designs
suggested by the exact approach. The latter are drawn from Tables II—VI in Eliasziw and
Donner4 for situations where only the direct costs of the observations are taken into account (in
their notation, where R

2
"R

3
"0). The approximate results are obtained from (12), with

k rounded up to the next integer value. The accuracy of the approximate method is again
satisfactory for most practical purposes.
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Table II. Estimates of sample size k, based on a"0·05, b"0·20, for various values of o
0
, o

1
and n

o
0

o
1

0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9

n"2
0 615·6 151·9 70·0 35·9 22·0 14·4 9·7 6·6 4·4
0·1 591·2 142·8 60·6 32·2 19·1 12·0 7·7 4·8
0·2 543·7 128·2 53·0 27·2 15·5 9·2 5·3
0·3 476·2 109·0 43·5 21·4 11·4 6·1
0·4 393·1 86·6 32·9 15·1 7·1
0·5 300·3 62·6 22·0 8·8
0·6 205·4 39·1 11·7
0·7 117·1 18·4
0·8 45·8

n"3
0 225·1 60·2 28·1 16·4 10·7 7·4 5·3 3·8 2·7
0·1 251·8 64·8 29·2 16·4 10·2 6·8 4·6 3·0
0·2 261·1 64·8 28·1 15·1 9·0 5·6 3·4
0·3 251·8 60·2 25·1 12·8 7·1 4·0
0·4 225·1 51·5 20·3 9·6 4·7
0·5 183·9 39·6 14·4 5·9
0·6 133·1 26·1 8·0
0·7 79·7 12·8
0·8 32·5

n"4
0 122·9 35·3 17·5 10·8 7·4 5·4 4·0 3·1 2·3
0·1 156·7 42·4 20·0 11·7 7·6 5·3 3·7 2·6
0·2 177·8 45·9 20·6 11·5 7·1 4·6 2·9
0·3 183·3 45·2 19·4 10·2 5·9 3·4
0·4 172·4 40·4 16·4 8·0 4·1
0·5 146·6 32·3 12·0 5·1
0·6 109·7 21·9 6·9
0·7 67·5 11·1
0·8 28·3

n"5
0 80·2 24·5 12·8 8·2 5·8 4·4 3·4 2·7 2·1
0·1 114·5 32·2 15·7 9·5 6·4 4·5 3·3 2·3
0·2 139·4 37·0 17·1 9·7 6·2 4·1 2·7
0·3 150·8 38·0 16·6 9·0 5·3 3·1
0·4 147·0 35·1 14·4 7·2 3·8
0·5 128·4 28·7 10·8 4·7
0·6 98·1 19·9 6·4
0·7 61·5 10·3
0·8 26·1

.
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Table II. (Continued)

o
0

o
1

0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9

n"10
0 25·6 9·8 6·0 4·3 3·4 2·8 2·3 2·0 1·7
0·1 54·8 17·3 9·3 6·0 4·3 3·3 2·6 2·0
0·2 81·8 23·3 11·5 6·9 4·7 3·3 2·3
0·3 100·4 26·6 12·2 6·9 4·3 2·7
0·4 106·4 26·4 11·3 5·9 3·2
0·5 98·9 22·8 8·9 4·1
0·6 79·2 16·5 5·5
0·7 51·5 8·9
0·8 22·6

n"20
0 10·5 5·1 3·6 2·8 2·4 2·1 1·9 1·7 1·5
0·1 34·7 12·0 6·8 4·7 3·5 2·8 2·3 1·8
0·2 60·7 18·2 9·3 5·8 4·0 2·9 2·1
0·3 80·8 22·1 10·4 6·0 3·9 2·5
0·4 90·2 22·9 10·0 5·3 3·0
0·5 86·8 20·4 8·1 3·8
0·6 71·3 15·1 5·2
0·7 47·3 8·3
0·8 21·1

Table III. Optimal number of replicates n, to minimize total sample size kn (a"0·05, b"0·20)

o
0

o
1

0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9

0 26 13 8 6 5 4 3 3 3
0·1 8 6 5 4 4 3 3 3
0·2 5 4 4 3 3 3 3
0·3 4 3 3 3 3 3
0·4 3 3 3 3 3
0·5 3 3 3 2
0·6 3 3 2
0·7 2 2
0·8 2

EXAMPLE

As mentioned earlier, this work was motivated by discussions among investigators concerning the
design of a reliability study for functional assessment by therapists of children with Down’s
syndrome. The instrument to be used, the GMFM (Gross Motor Functional Measure), had been
previously developed and validated for use with children with cerebral palsy.7 While development
of motor function in children with Down’s syndrome may be similar in some respects, there was
concern that certain differences in physical and intellectual development might affect the reliabil-
ity of the instrument in this context.
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Table IV. Comparison of optimal values of k and n derived from the approximate and exact methods
(a"0·05, b"0·20)

o
0

o
1

k n kn

Exact Approximate Exact Approximate Exact Approximate

0 0·2 8 8 12 13 96 104
0·4 7 7 6 6 42 42
0·6 7 6 3 4 21 24
0·8 4 4 2 3 8 12

0·2 0·4 36 46 5 4 180 184
0·6 12 16 4 3 48 48
0·8 6 6 3 3 18 18

0·4 0·6 51 52 3 3 153 156
0·8 9 10 3 3 27 30

0·6 0·8 26 27 3 3 78 81

Exact values are derived from Eliasziw and Donner,4 restricted to integers. Approximate values are calculated from
equation (12), and with k rounded up to the next integer value

Practical limitations meant that each child could only be evaluated by at most four therapists.
The investigators were hoping for inter-rater reliability of at least 0·85, and had determined that
reliability of 0·7 or higher would be acceptable. Hence we defined H

0
: o

0
"0·7 and H

1
: o

1
"0·85,

with a"0·05 and b"0·2.
The reliability work was done in the context of a population-based validation study which

involved children from early intervention programmes for Down’s syndrome in the province of
Ontario. To increase generalizability, it was intended to include as many different therapists as
possible. Preliminary enquiries suggested the availability of at least 15 therapists, and up to 25,
who would be willing to take part. Each therapist was required to commit a total of one half-day
of working time, which was sufficient to assess six children. Within the timeframe and other
logistical constraints of the study, it was expected that approximately 30 subjects would be
available.

Using (12) with the input parameters, the required number of subjects for various values of n,
and the total number of observations kn were:

n 2 3 4
k 42·4 29·2 25·0
kn 83·8 87·6 100·0

Assuming 30 children could take part, 15 therapists observing 6 children each implies 3 observa-
tions per child; with 30 children and 20 therapists, 4 observations per child could be made.
(Incidentally, these parameter values also permit some balance in the assignment of therapists to
subjects.)

Although n"3 is technically sufficient to meet the power requirement with 30 children
(because the calculated k"29·2), it was decided to use n"4 instead. This design allows some
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‘slack’ for missing data or dropout of therapists. The design selected was not optimal in terms of
minimizing kn, because n"2 would be preferred with the selected values of o

1
and o

0
; however,

the optimal design would have required 43 children, which was more than were available in the
relevant time frame.

DISCUSSION

The method presented here allows a relatively simple calculation of the required number of
subjects k for a given number of observations per subject n, and other parameter values to specify
the null and alternative values of reliability, significance level and power. Numerical comparison
reveals that the approximation has sufficient agreement with the previous exact calculations to be
of practical use. Note that we retained decimal values in our tabulated results on sample sizes and
in the example, even though only integer values (after rounding up) would be required in practice.
At the integer level, the agreement of our approximate results with the exact formulae is even
better.

One of the limiting factors in executing reliability studies in many settings is the difficulty of
arranging for the replicated observations. In clinical situations, for instance, there are typically
only a few specialists available in one place (for example, a hospital or clinic) who are willing to
participate in such a study and who are qualified to make the observations. Replication is also
limited by the tolerance of the subjects. In reliability studies on laboratory methods, these
problems are perhaps less acute, but even here there are limitations on the amount of laboratory
resources (people and equipment) available, and it may not be possible to separate the experi-
mental material (for example, tissue biopsies) into more than a few parts for replicated testing.

Accordingly, the design of reliability studies is often constrained to a limited range of potential
values for n. In the Down’s syndrome example, we indicated how the practical constraints were
identified to define candidate values for n, and corresponding values of k. Similar exploration is
indicated in other studies.

An interesting finding from the results of this paper is that the total number of observations is
minimized with a relatively small value of n, as long as the true reliability is reasonably high
(Table III). In many biomedical studies, reliability of at least 40 per cent is required to provide
a clinically useful method of measurement, and values much higher than 40 per cent are often
desirable. For such situations, one can uniformly recommend only two or three observations per
subject. The optima in such cases are fortuitously in concordance with the practical limitations
that often limit the value of n. Note, however, that these conclusions refer to optima at the
conventional values a"0·05 and b"0·20, and also only take the direct costs of observation into
account. Modification may be needed in other cases, for instance when there is an additional cost
associated with the recruitment of each subject.

As discussed previously by Donner and Eliasziw, the method used here is simplified by
considering only between- and within-subject variation as components of reliability, with a cor-
responding one-way ANOVA for the data. In some circumstances, it might be possible to allow
for more than one factor in the analysis, for instance in a design with full crossing of subjects and
observers. Our approach to sample size calculation under a one-way ANOVA formulation also
provides approximate guidelines to the two-way ANOVA situation, especially if rater effects are
small. In general, a two-way analysis that incorporates rather effects into the definition of
reliability will yield a required sample size that is a function of the rater effect. In actual data sets,
if a true rater effect exists but is ignored, the error mean square is artifactually inflated, the
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reliability coefficient is negatively biased, and the required sample size is increased. The more
appropriate two-way analysis has correspondingly higher power, by removing between-rater
variance from the error.

Kraemer8,9 has considered reliability in a two-way ANOVA context, but only included subject
and error effects in her definition of reliability, and excluded rater effects; thus her sample size
expressions are independent of rater effects. A treatment of sample size calculation in the two-way
ANOVA cases, taking rater effects explicitly into account, seems needed, but note that in practice
it is often difficult to obtain prior estimates of the magnitude of the rater effect. For our example,
other (unpublished) work has shown the GMFM measure to have inter-rater reliability of
approximately 0·96. This high level of reliability justifies the use of the one-way ANOVA, in which
the effects of specific raters are ignored. Lacking such information in other situations, the
approximate method given in this paper for the one-way formulation seems to be a practical
compromise.
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