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Abstract In multilevel modeling, the intraclass correlation
coefficient based on the one-way random-effects model is
routinely employed to measure the reliability or degree of
resemblance among group members. To facilitate the advo-
cated practice of reporting confidence intervals in future reli-
ability studies, this article presents exact sample size proce-
dures for precise interval estimation of the intraclass correla-
tion coefficient under various allocation and cost structures.
Although the suggested approaches do not admit explicit
sample size formulas and require special algorithms for car-
rying out iterative computations, they are more accurate than
the closed-form formulas constructed from large-sample ap-
proximations with respect to the expected width and assurance
probability criteria. This investigation notes the deficiency of
existing methods and expands the sample size methodology
for the design of reliability studies that have not previously
been discussed in the literature.

Keywords Intraclass correlation coefficient . Optimal
design . Precision . Sample size

In view of the recommendations ofWilkinson and theAmerican
Psychological Association Task Force on Statistical Inference
(1999), the American Educational Research Association Task
Force on Reporting of Research Methods (2006), and the

Publication Manual of the American Psychological
Association (2010), interval estimation is more informative
about the magnitude of a targeted parameter than is null hy-
pothesis significance testing, and it should be the best reporting
practice in all empirical studies. Accordingly, the editorial pol-
icies and statistical guidelines of several prominent educational
and psychological journals have called for greater use of confi-
dence intervals for principal effect sizes. In addition, numerous
practical principles and suggestions for selecting, calculating,
and interpreting effect size indices of various types of statistical
analyses have been addressed in the literature. Readers interest-
ed in learning more about the conceptual implications of point
and interval estimates of effect sizes are directed to articles by
Cumming (2012), Dunst and Hamby (2012), Ferguson (2009),
Fritz, Morris, and Richler (2012), Grissom and Kim (2012),
Odgaard and Fowler (2010), Robey (2004), Sun, Pan, and
Wang (2010), Thompson (2007), and the references therein.
Consequently, it has become a general consensus across many
scientific disciplines to include appropriate effect size measures
and associated confidence intervals when documenting the
results of research studies.

There is considerable recent literature pertaining to both the
theoretical and practical problems of investigating the hierar-
chical nature of individual and group influences in multilevel
research. The statistical and methodological issues associated
with hierarchical linear models can be found in Goldstein
(2002), Hofmann (2002), Raudenbush and Bryk (2002), and
Snijders and Bosker (2012). Within the context of the multi-
level framework, measurements on individuals (e.g., employ-
ee, student, patient) within the same group (e.g., organization,
classroom, clinic) are presumably more similar than measure-
ments on individuals in different groups. The correlation
among the measurements on individuals within the same group
must be appropriately accounted for in a clustering study.
Accordingly, the intraclass correlation coefficient (ICC) has
been extensively used to measure reliability or degree of
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resemblance among cluster members. Comprehensive reviews
related to the ICC as an interrater reliability measure were
presented in Bartko (1976), McGraw and Wong (1996), and
Shrout and Fleiss (1979). Specifically, McGraw and Wong
identified distinct definitions and relative merits of various
ICC indices and also emphasized the advantage of the exact
confidence interval procedure in coverage performance over
the approximate method.

To facilitate the advocated statistical practice of presenting
confidence intervals and to further improve the applicability of
multilevel modeling, the focus of this article is on the interval
estimation of the ICC effect size in a one-way random-effects
model. The ICC(1) index, introduced by Fisher (1938), is the
most frequently adopted measure of ICC. Hence, a convenient
approach is to apply the large-sample theory to approximate the
distribution of ICC(1). The numerical results of Donner and
Wells (1986) showed that the resulting interval procedures
provide consistently good coverage at all values of a population
ICC and are competitive, in terms of the mean width, with the
ANOVA F method. In contrast, Ukoumunne (2002) concluded
that the methods based upon the variance ratio F statistic give
greater coverage levels than those based upon the large-sample
normality of the ICC(1) estimator, especially when the data
have relatively few large groups and low ICC values. To some
extent, the validity of the simulation results in Donner and
Wells and in Ukoumunne is conditional on the assumed under-
lying model structures. Hence, further assessments with differ-
ent model configurations would be helpful in understanding the
intrinsic behavior of the competing interval procedures.

The stress on reporting effect sizes and confidence intervals
in empirical investigation suggests that researchers should plan
studies not only to select practically meaningful effect size
indices but also to have sufficiently accurate interval estimates
of effect sizes. Thus, it is prudent to aid this research practice by
determining the sample sizes that are necessary to satisfy the
desired precision of interval estimation in the planning stage of
reliability studies. Due to the entrenched use of the ICC(1)
index and the appealing simplicity of its asymptotic property,
Bonett (2002) and Giraudeau and Mary (2001) adopted
Fisher’s (1938) approximate variance estimator of ICC(1) and
presented a closed-form formula for determining the required
sample size so that the confidence interval will have the desired
expected width. Similarly, Zou (2012), using the same large-
sample approximation, suggested an explicit equation for cal-
culating the sample size that is needed to ensure that the interval
half-width is within a designated value with the prespecified
assurance probability. These simplified sample size methods
are straightforward to apply and do not require an iterative
solution. Moreover, numerical evidence was presented in
Bonett, in Giraudeau and Mary, and in Zou (2012) to demon-
strate the accuracy of these approximate procedures.

However, a detailed inspection reveals that Bonett (2002)
provided only a limited number of comparisons between the

exact and approximate sample sizes. Because no explicit
computational algorithm was presented, the exact sample
sizes reported in Bonett may actually be approximate values
of a different method. Arguably, the selected evaluations
between the supposedly exact and approximate sample sizes
do not justify the accuracy of the suggested approach. On the
other hand, the numerical investigation of Giraudeau and
Mary (2001) involved several model configurations and per-
formance measures. But their assessments were not conducted
in an organized fashion by fixing all but one of the key factors
and varying a single factor to help clarify the accuracy of the
presented technique. Moreover, Zou (2012) considered only
moderate and substantial levels of reliability, which may not
represent settings likely to be encountered with real data.
Thus, his evaluation did not cover a wide variety of parameter
settings and was not thorough enough to elucidate the poten-
tial deficiency of the approximate sample size method.
Consequently, a comprehensive investigation is required to
complement the existing appraisals and demonstrations in
Bonett, in Giraudeau and Mary, and in Zou. It is important
to ensure that the effects of vital factors on sample size
calculations are well understood before the technique can be
recognized as a general tool for optimal design of reliability
studies.

The simplicity of an approximate methodology may be
appealing for inducing computational shortcuts, but it does
not retain all of the essential features in the model formulation,
and thus, the resulting sample size techniques tend to be
restrictive and problematic. Specifically, it was noted in
Donner and Koval (1983) that the accuracy of the asymptotic
normality with Fisher’s (1938) simple variance formulation
depends on having moderately large numbers of groups—say,
at least 30 groups. Hence, the corresponding sample size
formula is vulnerable to model characteristics, and this restric-
tion may impede its applicability. With advanced computer
technology and prevalent statistical software, computational
simplicity is no longer a major concern in sample size plan-
ning. For exact interval estimation constructed with the vari-
ance ratio F statistic, the sample size issues have important
implications for conducting and interpreting reliability re-
search but have received relatively little attention in the liter-
ature. Although Bonett (2002) and Donner (1999) have
attempted some sample size calculations under the expected
width principle, their approaches are approximate in nature
and have not been fully evaluated empirically. Also, their
approaches do not generalize to the assurance probability
principle in a straightforward manner. It appears that no exact
sample size procedures have been proposed for the standard
confidence intervals based on the ANOVA F statistic.

Toward the goal of choosing the most appropriate method-
ology for reliability studies with potentially diverse model
configurations, the present article describes exact sample size
determinations for precise interval estimation of the ICC. It is
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of practical interest and theoretical importance to reinforce the
exact confidence intervals recommended by McGraw and
Wong (1996) by developing the associated sample size pro-
cedures for various design schemes. Under both the expected
width and assurance probability criteria, this study first exam-
ines research designs with the subject allocation constraint
that the number of subjects per group is fixed or the number
of groups is given. The prescribed studies of Bonett (2002),
Giraudeau and Mary (2001), and Zou (2012) concentrated
only on the first situation, and it is the only case in which
closed-form formulas can be obtained from the large-sample
approximation. Comprehensive appraisals were performed to
demonstrate the advantages of the suggested exact sample size
approaches over the approximate formulas under a wide range
of parameter configurations and sample size structures.

Then the study extends the design strategies to accommo-
date both budgetary constraints and precision assessments.
The cost implications suggest optimally assigning subjects
to satisfy a designated precision level for the least cost or to
attain maximum precision performance for a fixed cost.
Accordingly, exact sample size procedures are proposed to
obtain optimal solutions under both precision principles of
expected width and assurance probability. The related cost
issues in the design of reliability studies can be found in
Flynn, Whitley, and Peters (2002), Shoukri, Asyali, and
Donner (2004), Shoukri, Asyali, and Walter (2003), and the
references therein. Moreover, Giraudeau and Mary (2001)
demonstrated the approximate method and graphical displays
for the practical problem of determining the optimal sample
size combination in order to attain the narrowest expected
width when the total number of subjects is fixed in advance.
Since the formulation of the general cost function includes the
total number of subjects as a special case, the corresponding
illustration and algorithm provide an exact and more efficient
approach to computing the optimal sample sizes. Essentially,
this investigation updates and expands the current work for
precise interval estimation of ICC by noting the fundamental
deficiency of existing approximate formulas and demonstrat-
ing the usefulness of exact sample size procedures for various
allocation and cost plans. Corresponding SAS/IML (SAS
Institute, 2012) and R (R Development Core Team, 2013)
computer programs are also developed to help researchers
perform the recommended sample size procedures in the
research design of reliability studies.

Interval estimation procedures

In reliability studies, a frequently adopted design is the one-
way random-effects model

Yij ¼ μþ γi þ εij; i ¼ 1;…;G; j ¼ 1;…;N ; ð1Þ

where Yij is the j th individual measurement within group i , μ
is the grand mean, and γi and εij are independent random
variables with γi ~ N (0, σγ

2) and εij ~ N(0, σε
2). The variance

of Yij is then given by σγ
2 +σε

2, where σγ
2 represents the

between-group variance and σε
2 is the within-group variance.

Accordingly, the ICC ρ is defined as

ρ ¼ σ2
γ

σ2
γ þ σ2

ε

; ð2Þ

which is directly interpretable as the proportion of the total
variance of the response that is accounted for by the clustering
or group cohesion. To assess the magnitude of ρ, the well-
known ICC(1) index is denoted by

bρ ¼ MSB−MSW

MSBþ N−1ð ÞMSW
¼ F*−1

F*þ N−1
; ð3Þ

where MSB is the between-group mean square, MSW is the
within-group mean square, and F* = MSB /MSW. Under the
model assumption defined in Eq. 1, the ANOVA F test
statistic F* has the distribution

F*∼τF G−1;G N−1ð Þð Þ; ð4Þ

where τ = 1 + Nρ/(1 – ρ) and F (G – 1, G (N – 1)) is the F
distribution withG – 1 and G(N – 1) degrees of freedom. For
the purpose of the interval estimation of ρ, an exact 100(1 –
α)% two-sided confidence interval bρEL;bρEUf g of ρ can be
constructed from Eq. 4 as

bρEL;bρEU
n o

¼ F*=Fα=2−1
F � =Fα=2 þ N−1

;
F*=F 1−α=2ð Þ−1

F*=F 1−α=2ð Þ þ N−1

� �
ð5Þ

where Fα=2 and F 1−α=2ð Þ are the upper and lower 100(α/2)th
percentiles of theF distributionF(G – 1,G(N – 1)), respectively.
Accordingly, the upper and lower 100(1 – α)% one-sided confi-
dence intervals of ρ are of the form bρEL; 1f g and 0;bρEUf g ,
respectively, where bρEL ¼ F∗=Fα–1ð Þ= F∗=Fαþ N–1ð Þ andbρEU ¼ F∗=F 1−αð Þ–1

� �
= F∗=F 1–αð Þ þ N–1
� �

.
It was derived in Fisher (1938) that the large-sample vari-

ance of bρ can be approximated by

ν2 ¼ 2 1−ρð Þ2 1þ N−1ð Þρ½ �2
N N−1ð Þ G−1ð Þ :

This simplification gives a convenient approximation to the
underlying distribution of bρ with an asymptotic normal dis-
tribution

bρ∼N ρ;ν2
� �

: ð6Þ
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Thus, an approximate 100(1 – α)% two-sided confidence
interval bρAL; bρAUf g of ρ can be readily obtained as

bρAL;bρAU
n o

¼ bρ−z
α

.
2
bν;bρþ z

α

.
2
bν

8<
:

9=
;; ð7Þ

w h e r e ν ¼ bν2
� �1=2

; bν2 ¼ 2 1–bρð Þ2 1þ N–1ð Þbρ½ �2=
N N–1ð Þ G–1ð Þ½ � is the estimated variance of bρ and zα=2 is
the upper 100(α/2)th percentile of the standard normal
distribution. Also, the upper and lower 100(1 – α)% one-
sided confidence intervals of ρ can be expressed asbρAL; 1f g and 0;bρAUf g , respectively, where bρAL ¼ bρ–zαbν and bρAU ¼ bρþ zαbν . Although several comparable ap-
proximate interval procedures have been proposed as docu-
mented in Donner and Wells (1986) and Ukoumunne (2002),
at present there is very little information on the development
of supporting sample size methodology in the literature. The
attention is restricted to the simple method with Fisher’s
(1938) asymptotic variance estimator because it is the only
case where the accompanying sample size techniques for
precise interval estimation are already available. The approx-
imate formulas suggested in Bonett (2002), Giraudeau and
Mary (2001), and Zou (2012) are utilized as a benchmark to
contrast the performance of the exact approaches presented in
the subsequent explication.

For ease of illustration, the widths of the 100(1 – α)% two-
sided confidence intervals bρEL; bρEUf g and bρAL;bρAUf g giv-
en in Eqs. 5 and 7 are denoted by

W E ¼ bρEU−bρEL and WA ¼ bρAU−bρAL ¼ 2z
α

.
2
bν; ð8Þ

respectively. The subscripts E and A ofWE andWA emphasize
the dependence on the corresponding exact and approximate
procedures. It is clear that the actual widths WE and WA

depend on the confidence coefficient 1 – α, the sample size
in terms of the number of groups and the number of subjects
per group (G ,N), and the observed statistic F* orbρ . Since the
ANOVA F* and the bρ index are random variables, their
statistical properties determine the resulting confidence inter-
val width. When planning a study for ensuring that the confi-
dence interval is narrow enough to produce meaningful find-
ings, researchers must consider the stochastic nature of inter-
val widths WE and WA. Certainly, the sample size needed for
precise interval estimation is affected in important and distinc-
tive ways by the actual formulations of interval procedures
and associated distributional properties. It will be shown later
that the simple approximations may fail to properly account
for the embedded features and may lead to a poor choice of
sample size.

From an advance study design viewpoint, it is desirable to
determine the optimal sample sizes so that the resulting

confidence interval will meet the designated precision require-
ments. Two useful principles concern the control of the ex-
pected width and the assurance probability of the width within
a designated value. Specifically, it is necessary to calculate the
required sample size such that the expected width of a 100(1 –
α)% two-sided confidence interval is within the given bound

E W½ �≤δ;

whereW is the interval width and δ (> 0) is a constant. On the
other hand, one may compute the sample size needed to
guarantee, with a given assurance probability, that the width
of a 100(1 – α)% two-sided confidence interval will not
exceed the planned value

P W ≤ωð Þ≥1−γ;

where (1 – γ) is the specified assurance level and ω (>0) is a
constant. Since there may be several possible choices of
sample size combinations (G , N ) that satisfy the chosen
precision criterion in the process of sample size calculations,
it is constructive to consider design schemes with subject and
budget constraints that lead to a unique and optimal result. In
the next two sections, the ideas of Shieh and Jan (2012) are
applied to develop exact sample size procedures of precise
interval estimation of ICC with four different allocation and
cost settings under the expected width and assurance proba-
bility criteria, respectively.

Expected width criterion

An exact 100(1 – α)% two-sided confidence intervalbρEL;bρEUf g can be readily obtained with the ANOVA statistic
F* and the designated percentiles Fα=2 and F 1−α=2ð Þ; howev-
er, the evaluation of expected width E[WE] does not permit an
explicit expression. Note that the interval width WE is a
function of the F* statistic, which has an F distribution given
in Eq. 4. Since an F random variable is a one-to-one function
of a beta random variable and, unlike the range of an F
distribution, which is between 0 and infinity, a beta distribu-
tion is bounded between the values of 0 and 1, it is computa-
tionally simple and relatively stable to perform the numerical
integration of E [WE] with respect to a beta distribution, in-
stead of an F distribution. Accordingly, the utility of the
expected interval width is exploited to construct the optimal
sample size procedures for exact confidence interval estima-
tion in the following four design structures.

Design I: the number of subjects per group is fixed

Assuming that the number of subjects in each group is
prespecified, the expected width E [WE] is a monotone
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function of the number of groups when all other factors
remain constant. Thus, for a selected threshold δ, a simple
incremental search can be employed to find the minimum
sample size G such that

E W E½ �≤δ ð9Þ

for the chosen size N , confidence level (1 – α), and target ICC
value ρ. Essentially, it requires a special purpose algorithm to
perform the involved numerical computation. In contrast,
Bonett (2002) and Giraudeau and Mary (2001) used the ap-
proximation E WA½ � ¼ E 2zα=2bν� 	 ¼ 2zα=2ν to show that
the minimum sample size G such that E[WA] ≤ δ is equivalent
to the smallest integer G that satisfies the inequality

G≥
8z2α=2 1−ρð Þ2 1þ N−1ð Þρ½ �2

N N−1ð Þδ2 þ 1: ð10Þ

Clearly, the suggested sample size formula for the approx-
imate confidence interval bρAL;bρAUf g is relatively easy to
apply and does not involve any iterative computation. But the
confidence intervals and sample size method have some unde-
sirable properties, and they should not be used indiscriminately.

For the purposes of assessing the behavior of interval
estimation and sample size procedures, an extensive numeri-
cal examination was performed for the model settings in
Table 1 of Bonett (2002), and it was also extended to other
configurations that were not considered there. To demonstrate
a profound implication of the approximate and exact method-
ology, the empirical study was conducted in two steps. The
first step involved sample size calculations for the expected
width criterion across a wide range of model configurations.
In the second step, a Monte Carlo simulation study was
performed to provide insights into the precision behavior for
the interval estimation and sample size calculations under the
design characteristics specified in the first step.

First, a systematic numerical investigation of nested design
was conducted by fixing the confidence level (1 – α) = 0.95,
and varying the other three factors of interval bound δ = 0.2 and
0.3, the number of subjects per groupN = 2, 3, 5, 10, 20, and the
population ICC value ρ = 0–0.90with an increment of 0.1.With
these specifications, the required numbers of groups were com-
puted for the two approaches described in Eqs. 9 and 10,
respectively. To conserve space, only the computed sample sizes
associated with N = 5 and 10 for δ = 0.2 are presented in
Tables 1 and 2, respectively, whereas the corresponding results
for δ = 0.3 are listed in Tables 3 and 4. Moreover, the estimated
or achieved expected widths E W E½ � and E WA½ � ¼ 2zα=2ν

Table 1 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 5, and expected width δ = 0.2

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 42 0.9776 0.0026 0.9742 −0.0008 0.9518 0.0018 0.1974 0.1975 −0.0001
0.1 63 0.9732 −0.0018 0.9725 −0.0025 0.9457 −0.0043 0.1984 0.1985 −0.0001
0.2 80 0.9731 −0.0019 0.9754 0.0004 0.9485 −0.0015 0.1995 0.1995 0.0000

0.3 91 0.9748 −0.0002 0.9771 0.0021 0.9519 0.0019 0.1993 0.1992 0.0001

0.4 93 0.9722 −0.0028 0.9746 −0.0004 0.9468 −0.0032 0.1992 0.1993 −0.0001
0.5 86 0.9723 −0.0027 0.9772 0.0022 0.9495 −0.0005 0.1991 0.1992 −0.0001
0.6 71 0.9745 −0.0005 0.9758 0.0008 0.9503 0.0003 0.1993 0.1993 0.0000

0.7 51 0.9754 0.0004 0.9754 0.0004 0.9508 0.0008 0.1983 0.1986 −0.0003
0.8 29 0.9748 −0.0002 0.9767 0.0017 0.9515 0.0015 0.1992 0.1991 0.0001

0.9 12 0.9763 0.0013 0.9760 0.0010 0.9523 0.0023 0.1901 0.1909 −0.0008
Approximate method

0 40 0.9917 0.0167 0.9433 −0.0317 0.9350 −0.0150 0.1964 0.1985 −0.0021
0.1 62 0.9898 0.0148 0.9524 −0.0226 0.9422 −0.0078 0.1980 0.2000 −0.0020
0.2 81 0.9839 0.0089 0.9563 −0.0187 0.9402 −0.0098 0.1978 0.1996 −0.0018
0.3 93 0.9784 0.0034 0.9647 −0.0103 0.9431 −0.0069 0.1976 0.1990 −0.0015
0.4 95 0.9789 0.0039 0.9675 −0.0075 0.9464 −0.0036 0.1982 0.1995 −0.0013
0.5 88 0.9761 0.0011 0.9719 −0.0031 0.9480 −0.0020 0.1984 0.1993 −0.0010
0.6 73 0.9709 −0.0041 0.9762 0.0012 0.9471 −0.0029 0.1983 0.1987 −0.0004
0.7 51 0.9658 −0.0092 0.9821 0.0071 0.9479 −0.0021 0.2004 0.1998 0.0005

0.8 29 0.9599 −0.0151 0.9824 0.0074 0.9423 −0.0077 0.2014 0.1968 0.0046

0.9 10 0.9433 −0.0317 0.9918 0.0168 0.9351 −0.0149 0.2183 0.1901 0.0283
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are also summarized in the tables. Due to the underlying metric
of integer sample sizes, the resulting expected widths are mar-
ginally smaller than the selected width, δ = 0.2 or 0.3.

It follows from the sample sizes in Tables 1 and 2 that the
exact numbers G do not completely agree with those reported
in Table 1 of Bonett (2002). Hence, this clarifies that the
correct sample size, denoted by nc, in Bonett, provides only
an approximate number of groups needed for the exact confi-
dence interval bρEL;bρEUf g to have the desired expected width.
The computations for N = 2 also reveal that the results in
Table 5 of Donner (1999) are not exact solutions. On the other
hand, the differences between the required numbers of groups
of the exact and approximate methods in Tables 1, 2, 3, and 4
are 1 or 2 in most cases, with the worst case of 4 when δ = 0.2,
N = 10, and ρ = 0. However, the exact and approximate
confidence intervals are constructed with distinctive F and
normal distributions, respectively. The resulting sample sizes
needed to attain the designated precision are not necessarily
equivalent. The small discrepancy between the sample size
calculations may reveal an interesting phenomenon of the two
techniques, but it does not serve to assure the actual perfor-
mance of the approximate sample size formula. The relative
performance of the exact and approximate approaches is
further justified in the second stage of this empirical study.

With the given sample sizes and parameter configurations,
estimates of the true coverage probability and expected width
were computed through Monte Carlo simulation of 10,000
independent data sets. For each replicate, the confidence limits
associated with a 95 % two-sided confidence interval were
computed and were also employed to construct the upper and
lower 97.5 % one-sided confidence intervals. Accordingly, a
total of three different sets of confidence intervals were ob-
tained. Thus, the simulations cover a much broader range of
situations than those considered in Donner and Wells (1986),
Giraudeau and Mary (2001), and Ukoumunne (2002), which
examined only the performance of two-sided 95% confidence
intervals. In each case, the simulated coverage probability is
the proportion of the 10,000 replicates whose intervals contain
the population ICC ρ. The accuracy of the examined confi-
dence interval procedure is determined by the difference be-
tween the simulated coverage probability and the designated
coverage probability as error = simulated coverage probability
– nominal coverage probability. In addition, the average in-
terval width of ρ was also computed for the 10,000 replicated
widths of 95 % two-sided confidence intervals. The adequacy
of a sample size procedure for precise interval estimation is
determined by the following formula: error = simulated ex-
pected width – estimated expected width. The simulated

Table 2 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 10, and expected width δ = 0.2

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 14 0.9748 −0.0002 0.9750 0.0000 0.9498 −0.0002 0.1904 0.1903 0.0001

0.1 28 0.9729 −0.0021 0.9747 −0.0003 0.9476 −0.0024 0.1999 0.1999 0.0000

0.2 45 0.9753 0.0003 0.9774 0.0024 0.9527 0.0027 0.1985 0.1983 0.0002

0.3 58 0.9731 −0.0019 0.9749 −0.0001 0.9480 −0.0020 0.1991 0.1991 0.0000

0.4 65 0.9718 −0.0032 0.9746 −0.0004 0.9464 −0.0036 0.1992 0.1992 0.0000

0.5 64 0.9742 −0.0008 0.9735 −0.0015 0.9477 −0.0023 0.1996 0.1996 0.0000

0.6 56 0.9765 0.0015 0.9758 0.0008 0.9523 0.0023 0.1989 0.1988 0.0001

0.7 42 0.9750 0.0000 0.9751 0.0001 0.9501 0.0001 0.1976 0.1977 −0.0001
0.8 25 0.9757 0.0007 0.9736 −0.0014 0.9493 −0.0007 0.1965 0.1964 0.0001

0.9 10 0.9751 0.0001 0.9724 −0.0026 0.9475 0.0025 0.1944 0.1948 −0.0004
Approximate method

0 10 0.9996 0.0246 0.8740 −0.1010 0.8736 −0.0764 0.1900 0.1948 −0.0048
0.1 26 0.9942 0.0192 0.9295 −0.0455 0.9237 −0.0263 0.1965 0.1998 −0.0033
0.2 44 0.9879 0.0129 0.9465 −0.0285 0.9344 −0.0156 0.1970 0.1996 −0.0026
0.3 59 0.9854 0.0104 0.9528 −0.0222 0.9382 −0.0118 0.1963 0.1987 −0.0024
0.4 67 0.9816 0.0066 0.9601 −0.0149 0.9417 −0.0083 0.1967 0.1985 −0.0018
0.5 66 0.9794 0.0044 0.9648 −0.0102 0.9442 −0.0058 0.1980 0.1993 −0.0014
0.6 57 0.9739 −0.0011 0.9693 −0.0057 0.9432 −0.0068 0.1992 0.1999 −0.0007
0.7 43 0.9708 −0.0042 0.9729 −0.0021 0.9437 −0.0063 0.2003 0.1999 0.0005

0.8 24 0.9668 −0.0082 0.9788 0.0038 0.9456 −0.0044 0.2051 0.1998 0.0053

0.9 9 0.9534 −0.0216 0.9856 0.0106 0.9390 −0.0110 0.2198 0.1880 0.0318

Behav Res (2014) 46:808–822 813



results of three types of coverage probabilities, average
widths, and corresponding errors for the exact approach and
the approximate method are also presented in Tables 1, 2, 3,
and 4.

The numerical results indicate that the simulated coverage
probabilities of the one- and two-sided exact confidence in-
tervals closely agree with the nominal confidence levels for all
40 combined cases. In particular, the case of the 95 % two-
sided confidence interval estimation with δ = 0.3,N = 10,G =
8, and ρ = 0 yielded a simulated coverage probability 0.9450
and induced the largest absolute error 0.0050. Thus, the accu-
rate performance of the exact confidence interval procedures
is extremely stable for all model configurations including the
settings with small numbers of groups and small ICC values.
However, it is not the case for the approximate confidence
intervals.

A closer look at the coverage behavior of the approximate
confidence intervals shows that the discrepancy between sim-
ulated and nominal coverage probabilities tends to decrease
for larger numbers of groups. Although this general pattern is
consistent with the findings of Donner and Koval (1983)
about the accuracy of the asymptotic normality with Fisher’s
variance estimator, the sizable errors of the one- and two-sided
confidence intervals reveal that the approximation remains
problematic even for some G ≥ 30. For example, the errors

associated with the upper 97.5 % confidence intervals in
Table 1 are 0.0167, 0.0148, 0.0089, and 0.0034 for ρ = 0,
0.1, 0.2, and 0.3 withG = 40, 62, 81, and 93, respectively. For
the lower 97.5 % confidence intervals, the resulting coverage
differences are −0.0317, –0.0226, –0.0187, and −0.0103.
Hence, the combined coverage errors of the 95 % two-sided
confidence intervals are −0.0150, –0.0078, –0.0098, and
−0.0069. Unfortunately, there are many similar and problem-
atic cases in Tables 2, 3, and 4 as well. Although the simple
guideline suggests that the asymptotic normality with Fisher’s
variance estimator is reasonable forG ≥ 30, the approximation
is less accurate when the population ICC is small. Moreover,
the confidence limits of the 95 % two-sided confidence inter-
val are the same as the respective lower and upper limits of the
one-sided upper and lower 97.5 % confidence intervals. Thus,
it is misleading to report that a two-sided interval procedure is
accurate on the basis of a combination of some noticeable
under- and overestimated one-sided coverage probabilities.
Consequently, a mere coverage probability assessment of
two-sided confidence intervals may obscure potential biases
in confidence limits of the transformed equidistant confidence
intervals based on the large-sample approximation. On the
other hand, the simulated expected width of the approximate
confidence intervals showed good agreement with the esti-
mated interval width unless the number of groups is small. To

Table 3 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 5, and expected width δ = 0.3

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 20 0.9734 −0.0016 0.9733 −0.0017 0.9467 −0.0033 0.2970 0.2959 0.0011

0.1 29 0.9751 0.0001 0.9724 −0.0026 0.9475 −0.0025 0.2948 0.2953 −0.0005
0.2 36 0.9761 0.0011 0.9749 −0.0001 0.9510 0.0010 0.2968 0.2971 −0.0003
0.3 40 0.9750 0.0000 0.9765 0.0015 0.9515 0.0015 0.2987 0.2987 0.0000

0.4 41 0.9742 −0.0008 0.9763 0.0013 0.9505 0.0005 0.2977 0.2978 −0.0001
0.5 38 0.9724 −0.0026 0.9760 0.0010 0.9484 −0.0016 0.2972 0.2974 −0.0002
0.6 31 0.9726 −0.0024 0.9760 0.0010 0.9486 −0.0014 0.2997 0.2999 −0.0002
0.7 23 0.9752 0.0002 0.9750 0.0000 0.9502 0.0002 0.2972 0.2966 0.0006

0.8 14 0.9754 0.0004 0.9744 −0.0006 0.9498 −0.0002 0.2953 0.2944 0.0009

0.9 7 0.9750 0.0000 0.9735 −0.0015 0.9485 −0.0015 0.2771 0.2745 0.0026

Approximate method

0 19 0.9955 0.0205 0.9202 −0.0548 0.9157 −0.0343 0.2866 0.2922 −0.0056
0.1 29 0.9893 0.0143 0.9384 −0.0366 0.9277 −0.0223 0.2893 0.2952 −0.0059
0.2 37 0.9849 0.0099 0.9480 −0.0270 0.9329 −0.0171 0.2921 0.2975 −0.0054
0.3 42 0.9809 0.0059 0.9558 −0.0192 0.9367 −0.0133 0.2931 0.2981 −0.0050
0.4 43 0.9791 0.0041 0.9597 −0.0153 0.9388 −0.0112 0.2942 0.2984 −0.0042
0.5 40 0.9729 −0.0021 0.9667 −0.0083 0.9396 −0.0104 0.2947 0.2977 −0.0031
0.6 33 0.9684 −0.0066 0.9708 −0.0042 0.9392 −0.0108 0.2962 0.2980 −0.0018
0.7 24 0.9636 −0.0114 0.9759 0.0009 0.9395 −0.0105 0.2967 0.2947 0.0020

0.8 14 0.9587 −0.0163 0.9804 0.0054 0.9391 −0.0109 0.3046 0.2888 0.0158

0.9 5 0.9372 −0.0378 0.9803 0.0053 0.9175 −0.0325 0.3779 0.2851 0.0928
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enhance the illustration, the errors between the simulated
expected width and estimated expected width of the exact
approach and the approximate method in Table 4 are plotted
in Fig. 1 as a supplement. Although the simple sample size
formula was generally effective for attaining the expected

width requirement, the overall coverage of the approximate
confidence intervals may not be convincing enough for mak-
ing sound applications. In short, these detailed appraisals
confirmed that the exact interval estimation and sample size
procedures are superior to the approximate techniques in
terms of coverage probability performance and expected
width precision for all situations even if the number of groups
is substantially large.
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Fig. 1 The performance of expected width with N = 10 and δ = 0.3

Table 4 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 10, and expected width δ = 0.3

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 8 0.9711 −0.0039 0.9739 −0.0011 0.9450 −0.0050 0.2912 0.2910 0.0002

0.1 14 0.9759 0.0009 0.9738 −0.0012 0.9497 −0.0003 0.2978 0.2982 −0.0004
0.2 21 0.9766 0.0016 0.0764 0.0014 0.9530 0.0030 0.2959 0.2954 0.0005

0.3 26 0.9734 −0.0016 0.9744 −0.0006 0.9478 −0.0022 0.2985 0.2981 0.0004

0.4 29 0.9773 0.0023 0.9723 −0.0027 0.9496 −0.0004 0.2968 0.2969 −0.0001
0.5 28 0.9722 −0.0028 0.9736 −0.0014 0.9458 −0.0042 0.2995 0.2995 0.0000

0.6 25 0.9745 −0.0005 0.9751 0.0001 0.9496 −0.0004 0.2958 0.2956 0.0002

0.7 19 0.9742 −0.0008 0.9735 −0.0015 0.9477 −0.0023 0.2941 0.2938 0.0003

0.8 12 0.9750 0.0000 0.9759 0.0009 0.9509 0.0009 0.2890 0.2898 −0.0008
0.9 6 0.9726 −0.0024 0.9761 0.0011 0.9487 −0.0013 0.2710 0.2741 −0.0031

Approximate method

0 5 0.9998 0.0248 0.8144 −0.1606 0.8142 −0.1358 0.2752 0.2922 −0.0170
0.1 13 0.9973 0.0223 0.8998 −0.0752 0.8971 −0.0529 0.2777 0.2885 −0.0107
0.2 21 0.9921 0.0171 0.9244 −0.0506 0.9165 −0.0335 0.2832 0.2927 −0.0095
0.3 27 0.9882 0.0132 0.9392 −0.0358 0.9274 −0.0226 0.2892 0.2968 −0.0076
0.4 30 0.9831 0.0081 0.9501 −0.0249 0.9332 −0.0168 0.2932 0.2995 −0.0063
0.5 30 0.9807 0.0057 0.9545 −0.0205 0.9352 −0.0148 0.2937 0.2984 −0.0047
0.6 26 0.9745 −0.0005 0.9632 −0.0118 0.9377 −0.0123 0.2966 0.2992 −0.0026
0.7 20 0.9707 −0.0043 0.9701 −0.0049 0.9408 −0.0092 0.2960 0.2936 0.0024

0.8 12 0.9608 −0.0142 0.9724 −0.0026 0.9332 −0.0168 0.3042 0.2889 0.0153

0.9 5 0.9501 −0.0249 0.9739 −0.0011 0.9240 −0.0260 0.3476 0.2659 0.0817

Table 5 Number of subjects per group of the exact approach for 1 – α =
0.95, expected width δ = 0.2, and the number of groups G = 20, 40, 60,
80, and 100

G 20 40 60 80 100
ρ N N N N N

0 8 6 5 4 4

0.1 16 8 6 5 4

0.2 >2,000 12 7 5 5

0.3 >2,000 41 10 6 5

0.4 >2,000 >2,000 13 7 5

0.5 >2,000 >2,000 13 6 4

0.6 >2,000 >2,000 8 4 3

0.7 >2,000 12 4 3 3

0.8 >2,000 3 2 2 2

0.9 3 2 2 2 2

Behav Res (2014) 46:808–822 815



Design II: the number of groups is specified

An alternative setting is to find the optimal sample size when
the number of groupsG is fixed in advance. Hence, it reduces
the problem to the determination of the required number of
subjects N per group to achieve the desired expected width.
Basically, the prescribed exact and iterative algorithm can be
modified to compute the minimum sample size N such that
the expected width of the exact confidence interval E [WE] ≤ δ
for the desired bound δ, selected sizeG , confidence level (1 –
α), and target ICC value ρ. In this case, for the approximate
confidence intervals, the particular form of Fisher’s asymptot-
ic variance estimator ν2 does not permit a closed-form formu-
la for calculating the necessary number of subjects N in each
group. It appears that this setup has not been considered in the
literature, including Bonett (2002) and Giraudeau and Mary
(2001).

For demonstration, the optimal sample sizes N in each
group are listed in Table 5 for 1 – α = 0.95, δ = 0.2, G = 20,
40, 60, 80, and 100, and ρ = 0–0.9 with an increment of 0.1.
Since the number of groups G plays an essential role in the
evaluation of expected width, the search of the optimal value
N does not always give practically useful results when G is
relatively small. Accordingly, the computation was terminated
whenN > 2,000, as noted in Table 5. Despite these incomplete
results, it is seen that the computed sample size N decreases
with an increasing value of G and is a concave function of ρ
when all other factors are fixed. As a cautionary note, the
findings suggest that it requires a careful examination of the
design structure when the number of groups is less than 40 and
the population ρ is in the neighborhood of 0.5. Without a
detailed appraisal, one may unknowingly conduct a studywith
an underestimated sample size, which leads to the undesirable
consequences of inadequate precision performance and an
unsatisfactory research outcome.

Design III: total cost is fixed and the expected width needs
to be minimized

To assess the cost of a reliability study, Eliasziw and Donner
(1987) considered the following linear cost function:

C ¼ CO þ CGGþ CNN þ CGNGN ; ð11Þ

where CO is the overhead cost for the study, CG reflects costs
proportional to the number of groups, CN denotes costs pro-
portional to the number of subjects per group, and CGN stands
for costs proportional to both the number of groups and the
number of subjects per group. Their focus, however, was on
the cost and power issues of a hypothesis-testing procedure.
Instead, the precision of confidence intervals is examined here
under the cost setup. Accordingly, for a fixed total cost, a
problem of practical interest is to decide the optimal design in

terms of (G , N ) in order to have the narrowest expected width
of a confidence interval.

In view of the discrete nature of sample sizes, the optimal
solution can be found through a screening of a finite number
of (G , N ) combinations that attain the minimum expected
width subject to the cost constraint. First, when N = 2, the
maximum number of groups Gmax is computed by Gmax =
Floor{(C – CO – 2CN)/(CG + 2CGN)} for the specified total
cost C and cost coefficients (CO, CG, CN, CGN), where the
function Floor (a ) returns the largest integer that is less than or
equal to a . Then detailed expected width calculations and
comparisons are performed for the sample size combinations
(G , N) with N = Floor{(C – CO – CGG)/(CN + CGNG)} for
G = 2 to Gmax. Ultimately, the optimal sample size allocation
is the one giving the least expected width. It is noteworthy that
the cost function in Eq. 11 reduces toC =GN withCO =CG =
CN = 0 and CGN = 1. Therefore, the consideration of a fixed
total number of subjects in Giraudeau and Mary (2001) is a
special case of the fixed total cost framework. Conceivably,

Table 7 Optimal sample sizes (G ,N), and total number of subjects of the
exact procedure when the total number of subjects needs to be minimized
for 1 – α = 0.95 and expected width δ = 0.2

ρ G N GN Estimated Expected Width

0 9 14 126 0.1976

0.1 31 9 279 0.1993

0.2 66 6 396 0.1999

0.3 112 4 448 0.2000

0.4 111 4 444 0.1992

0.5 128 3 384 0.1992

0.6 100 3 300 0.1991

0.7 68 3 204 0.1994

0.8 56 2 112 0.1983

0.9 21 2 42 0.1962

Table 6 Optimal sample sizes (G , N) and estimated expected widths of
the exact procedure when the maximum number of subjects is C = 300
for 1 – α = 0.95

ρ G N GN Estimated Expected Width

0 10 30 300 0.0894

0.1 30 10 300 0.1924

0.2 50 6 300 0.2299

0.3 75 4 300 0.2437

0.4 75 4 300 0.2416

0.5 100 3 300 0.2252

0.6 100 3 300 0.1991

0.7 100 3 300 0.1640

0.8 150 2 300 0.1175

0.9 150 2 300 0.0625
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Table 9 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 10, P(W ≤ ω) = 0.9, and ω = 0.2

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 20 0.9739 −0.0011 0.9755 0.0005 0.9494 −0.0006 0.8950 0.9009 −0.0059
0.1 38 0.9743 −0.0007 0.9717 −0.0033 0.9460 −0.0040 0.8984 0.9019 −0.0035
0.2 54 0.9737 −0.0013 0.9752 0.0002 0.9489 −0.0011 0.9045 0.9068 −0.0023
0.3 64 0.9727 −0.0023 0.9748 −0.0002 0.9475 −0.0025 0.9055 0.9101 −0.0046
0.4 67 0.9769 0.0019 0.9774 0.0024 0.9543 0.0043 1.0000 1.0000 0.0000

0.5 67 0.9743 −0.0007 0.9747 −0.0003 0.9490 −0.0010 1.0000 1.0000 0.0000

0.6 63 0.9759 0.0009 0.9733 −0.0017 0.9492 −0.0008 0.9141 0.9140 0.0001

0.7 52 0.9725 −0.0025 0.9734 −0.0016 0.9459 −0.0041 0.9098 0.9132 −0.0034
0.8 35 0.9746 −0.0004 0.9741 −0.0009 0.9487 −0.0013 0.8996 0.9037 −0.0041
0.9 17 0.9750 0.0000 0.9736 −0.0014 0.9486 −0.0014 0.9088 0.9058 0.0030

Approximate method

0 18 0.9989 0.0239 0.9048 −0.0702 0.9037 −0.0463 0.9227 0.9224 0.0003

0.1 37 0.9945 0.0195 0.9416 −0.0334 0.9361 −0.0139 0.9245 0.9039 0.0206

0.2 55 0.9877 0.0127 0.9482 −0.0268 0.9359 −0.0141 0.9476 0.9156 0.0320

0.3 66 0.9843 0.0093 0.9553 −0.0197 0.9396 −0.0104 0.9835 0.9132 0.0703

0.4 69 0.9816 0.0066 0.9609 −0.0141 0.9425 −0.0075 1.0000 0.9409 0.0591

0.5 69 0.9781 0.0031 0.9652 −0.0098 0.9433 −0.0067 1.0000 0.9272 0.0728

0.6 65 0.9730 −0.0020 0.9704 −0.0046 0.9434 −0.0066 0.9538 0.9088 0.0450

0.7 53 0.9723 −0.0027 0.9724 −0.0026 0.9447 −0.0053 0.9128 0.9091 0.0037

0.8 35 0.9682 −0.0068 0.9798 0.0048 0.9480 −0.0020 0.8815 0.9075 −0.0260
0.9 16 0.9592 −0.0158 0.9888 0.0138 0.9480 −0.0020 0.8616 0.9260 −0.0644

Table 8 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 5, P(W ≤ ω) = 0.9, and ω = 0.2

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 55 0.9767 0.0017 0.9723 −0.0027 0.9490 −0.0010 0.9123 0.9157 −0.0034
0.1 75 0.9771 0.0021 0.9733 −0.0017 0.9504 0.0004 0.9152 0.9125 0.0027

0.2 89 0.9724 −0.0026 0.9757 0.0007 0.9481 −0.0019 0.9160 0.9203 −0.0043
0.3 94 0.9786 0.0036 0.9765 0.0015 0.9551 0.0051 1.0000 1.0000 0.0000

0.4 94 0.9742 −0.0008 0.9754 0.0004 0.9496 −0.0004 1.0000 1.0000 0.0000

0.5 93 0.9772 0.0022 0.9758 0.0008 0.9530 0.0030 0.9476 0.9492 −0.0016
0.6 82 0.9771 0.0021 0.9741 −0.0009 0.9512 0.0012 0.9017 0.9036 −0.0019
0.7 65 0.9740 −0.0010 0.9738 −0.0012 0.9478 −0.0022 0.9122 0.9159 −0.0037
0.8 42 0.9758 0.0008 0.9720 −0.0030 0.9478 −0.0022 0.8989 0.9046 −0.0057
0.9 20 0.9746 −0.0004 0.9741 −0.0009 0.9487 −0.0013 0.9133 0.9128 0.0005

Approximate method

0 54 0.9898 0.0148 0.9440 −0.0310 0.9338 −0.0162 0.9200 0.9099 0.0101

0.1 76 0.9884 0.0134 0.9561 −0.0189 0.9445 −0.0055 0.9416 0.9125 0.0291

0.2 91 0.9850 0.0100 0.9609 −0.0141 0.9459 −0.0041 0.9685 0.9113 0.0572

0.3 97 0.9769 0.0019 0.9659 −0.0091 0.9428 −0.0072 1.0000 0.9146 0.0854

0.4 97 0.9763 0.0013 0.9658 −0.0092 0.9421 −0.0079 1.0000 0.9807 0.0193

0.5 95 0.9748 −0.0002 0.9671 −0.0079 0.9419 −0.0081 1.0000 0.9056 0.0944

0.6 84 0.9708 −0.0042 0.9747 −0.0003 0.9455 −0.0045 0.9202 0.9021 0.0181

0.7 65 0.9684 −0.0066 0.9780 0.0030 0.9464 −0.0036 0.8968 0.9009 −0.0041
0.8 42 0.9633 −0.0117 0.9816 0.0066 0.9449 −0.0051 0.8906 0.9145 −0.0239
0.9 18 0.9515 −0.0235 0.9924 0.0174 0.9439 −0.0061 0.8567 0.9170 −0.0603
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the proposed algorithm is more efficient than their graphical
displays for determining the correct optimal sample size. Also,
it is important not to overlook the fundamental distinction
between the suggested exact methods and their approximate
procedures. To illustrate the suggested algorithm for optimal
sample size determination when the total number of subjects is
fixed or a cost function with CO = CG = CN = 0 and CGN = 1,
the optimal combination (G , N) and achieved expected width
E[WE] are given in Table 6 for 1 – α = 0.95, C = 300, and ρ =
0–0.9 with an increment of 0.1. It is interesting to see that the
number of groups G and the number of subjects per group N
of the best allocation set increases and decreases with an
increasing value of ρ, respectively. Whereas the estimated
expected width is a concave function of ρ with a maximum
0.2437 around ρ = 0.3.

Design IV: target expected width is fixed and the total cost
needs to be minimized

Another cost-related issue is to find the optimal sample size
combination to meet a specified expected width requirement
for the least cost. This problem is actually more involved than
the previous one and was not considered in Giraudeau and
Mary (2001). The search of the optimal result needs to syn-
thesize the two procedures of determining the ideal G and N

when the other term is given as described in the design settings
I and II, respectively. The suggested procedure is conducted in
three steps. First, the previous algorithm is applied to find the
optimal number of groupsGmax needed to achieve the desired
precision with expected width δ for the specified coverage
probability 1 – α, parameter value ρ, and the number of
subjects per group N = 2. Then, a sequence of sample size
calculations are performed to determine the optimal number of
subjects per group, denoted by (N2, . . . , NGmax – 1), required
to meet the target expected width δ for the specified coverage
probability 1 – α, parameter value ρ, andG = 2 to (Gmax – 1).
This is a direct application of the exact approach presented in
the second design setting. In the third and last stage, the
optimal solution (G* , N*) is the pair of values (G , N ) giving
the smallest cost for all combinations (G , N ) = {(2, N2), (3,
N3), . . . , (Gmax – 1, NGmax – 1), (Gmax, 2)}. However, there
may be more than one combination giving the same
amount of least cost. A further screening and selection
process is conducted to find the one producing the
narrowest expected width. Clearly, a computer program
is more efficient than a graphical chart for determining
the necessary outcome.

The corresponding optimal evaluations are exemplified in
Table 7 when the total number of subjects GN needs to be
minimized with 1 – α = 0.95, δ = 0.20, and ρ = 0–0.9 with an

Table 10 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 5, P(W ≤ ω) = 0.9, and ω = 0.3

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 28 0.9755 0.0005 0.9765 0.0015 0.9520 0.0020 0.9106 0.9131 −0.0025
0.1 36 0.9765 0.0015 0.9762 0.0012 0.9527 0.0027 0.9173 0.9103 0.0070

0.2 41 0.9753 0.0003 0.9750 0.0000 0.9503 0.0003 0.9283 0.9273 0.0010

0.3 42 0.9749 −0.0001 0.9747 −0.0003 0.9496 −0.0004 1.0000 1.0000 0.0000

0.4 42 0.9774 0.0024 0.9748 −0.0002 0.9522 0.0022 1.0000 1.0000 0.0000

0.5 42 0.9745 −0.0005 0.9754 0.0004 0.9499 −0.0001 1.0000 1.0000 0.0000

0.6 39 0.9731 −0.0019 0.9732 −0.0018 0.9463 −0.0037 0.9326 0.9302 0.0024

0.7 32 0.9767 0.0017 0.9738 −0.0012 0.9505 0.0005 0.9196 0.9193 0.0003

0.8 22 0.9736 −0.0014 0.9750 0.0000 0.9486 −0.0014 0.9065 0.9057 0.0008

0.9 12 0.9764 0.0014 0.9747 −0.0003 0.9511 0.0011 0.9140 0.9151 −0.0011
Approximate method

0 28 0.9938 0.0188 0.9305 −0.0445 0.9243 −0.0257 0.9398 0.9208 0.0190

0.1 37 0.9889 0.0139 0.9409 −0.0341 0.9298 −0.0202 0.9487 0.9057 0.0430

0.2 43 0.9835 0.0085 0.9563 −0.0187 0.9398 −0.0102 1.0000 0.9042 0.0958

0.3 45 0.9795 0.0045 0.9579 −0.0171 0.9374 −0.0126 1.0000 0.9310 0.0690

0.4 44 0.9760 0.0010 0.9625 −0.0125 0.9385 −0.0115 1.0000 0.9636 0.0364

0.5 45 0.9730 −0.0020 0.9661 −0.0089 0.9391 −0.0109 1.0000 0.9297 0.0703

0.6 41 0.9678 −0.0072 0.9717 −0.0033 0.9395 −0.0105 0.9586 0.9184 0.0402

0.7 33 0.9656 −0.0094 0.9792 0.0042 0.9448 −0.0052 0.9157 0.9166 −0.0009
0.8 22 0.9587 −0.0163 0.9847 0.0097 0.9434 −0.0066 0.8800 0.9139 −0.0339
0.9 10 0.9473 −0.0277 0.9923 0.0173 0.9396 −0.0104 0.8198 0.9043 −0.0845
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increment of 0.1. In this case, the number of subjects per
group of the optimal combination decreases with an increas-
ing value of ρ. On the other hand, the number of groups and
the total number of subjects are concave functions of ρ.
Specifically, the required total number of subjects GN = 448
for ρ = 0.3 confirms that the specified magnitude C = GN =
300 presented in the preceding empirical illustration in Table 6
is not large enough to ensure the designated precision level
with δ = 0.20.

Assurance probability criterion

In addition to the expected width criterion, a useful alternative
approach for sample size determination is to ensure that the
actual confidence interval width will not exceed the planned
bound with a given assurance probability. As in the case of
expected width, this precision principle is explicated in the
following four design schemes with different allocation and
cost concerns.

Design I: the number of subjects per group is fixed

With a preassigned number of subjects in each group, the
assurance probability P{WE ≤ ω} for the width of a 100(1

– α)% exact two-sided confidence interval to not exceed the
planned value ω is a one-to-one function of the number of
groups when the target ICC value ρ remains constant. The
exact value P{WE ≤ ω} can be computed by numerical
integration with respect to a beta probability density function.
Then it is straightforward to find the minimum sample size G
such that

P WE ≤ωð Þ≥1−γ ð12Þ

through an iterative search where (1 – γ) is the specified
assurance level and ω (> 0) is a width bound. Due to the
involved computation of the exact assurance probability, a
computer algorithm similar to the one in the expected width
criterion was developed.

Along the same line of the approximation perspective of
Bonett (2002) and Giraudeau and Mary (2001), Zou (2012)
proposed that the minimum sample size G such that P(WA ≤
ω) ≥ 1 – γ is identical to the smallest integer G that satisfies
the inequality

G≥
f ρð Þ½ �1=2 þ f ρð Þ þ 2zγωf 0 ρð Þ=zα=2

� 	1=2n o2

4ω2=z 2
α=2

þ 1; ð13Þ

Table 11 Sample size, coverage, and precision of the exact and approximate procedures for 1 – α = 0.95, N = 10, P(W ≤ ω) = 0.9, and ω = 0.3

ρ G Upper 97.5 % Error Lower 97.5 % Error Two-sided 95 % Error Simulated E[W] Estimated E[W] Error

Exact approach

0 12 0.9765 0.0015 0.9753 0.0003 0.9518 0.0018 0.9008 0.9013 −0.0005
0.1 20 0.9731 −0.0019 0.9757 0.0007 0.9488 −0.0012 0.8999 0.9050 −0.0051
0.2 27 0.9756 0.0006 0.9761 0.0011 0.9517 0.0017 0.9472 0.9445 0.0027

0.3 30 0.9774 0.0024 0.9749 −0.0001 0.9523 0.0023 1.0000 1.0000 0.0000

0.4 30 0.9766 0.0016 0.9744 −0.0006 0.9510 0.0010 1.0000 1.0000 0.0000

0.5 30 0.9744 −0.0006 0.9735 −0.0015 0.9479 −0.0021 1.0000 1.0000 0.0000

0.6 29 0.9773 0.0023 0.9711 −0.0039 0.9484 −0.0016 0.9116 0.9102 0.0014

0.7 25 0.9743 −0.0007 0.9757 0.0007 0.9500 0.0000 0.9071 0.9043 0.0028

0.8 19 0.9763 0.0013 0.9727 −0.0023 0.9490 −0.0010 0.9259 0.9273 −0.0014
0.9 10 0.9755 0.0005 0.9760 0.0010 0.9515 0.0015 0.9002 0.9019 −0.0017

Approximate method

0 10 0.9996 0.0246 0.8741 −0.1009 0.8737 −0.0763 0.9196 0.9129 0.0067

0.1 20 0.9960 0.0210 0.9190 −0.0560 0.9150 −0.0350 0.9559 0.9273 0.0286

0.2 27 0.9910 0.0160 0.9373 −0.0377 0.9283 −0.0217 0.9556 0.9051 0.0505

0.3 32 0.9875 0.0125 0.9504 −0.0246 0.9379 −0.0121 1.0000 0.9317 0.0683

0.4 32 0.9825 0.0075 0.9523 −0.0227 0.9348 −0.0152 1.0000 0.9521 0.0479

0.5 32 0.9779 0.0029 0.9595 −0.0155 0.9374 −0.0126 1.0000 0.9296 0.0704

0.6 31 0.9725 −0.0025 0.9643 −0.0107 0.9368 −0.0132 1.0000 0.9017 0.0983

0.7 27 0.9702 −0.0048 0.9685 −0.0065 0.9387 −0.0113 0.9360 0.9268 0.0092

0.8 19 0.9634 −0.0116 0.9770 0.0020 0.9404 −0.0096 0.8962 0.9277 −0.0315
0.9 9 0.9528 −0.0222 0.9854 0.0104 0.9382 −0.0118 0.8271 0.9160 −0.0889
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where f (ρ ) = 2(1–ρ )2[1 + (N –1)ρ ]2/[N (N –1)] and f
′(ρ)={4(1–ρ )[1+(N–1)ρ ]|N–2+2ρ–2Nρ |}/[N(N–1)]. It was
noted in Zou that Eq. 13 reduces to Eq. 10 for γ = 0.5 andω =
δ. Hence, the smallest sample size that suffices to have an
expected width E [WA] ≤ ω is the same as that to obtain an
assurance probability P(WA ≤ ω) ≥ 0.5. However, the ap-
proximate formula in Eq. 13 may not provide satisfactory
results even when the number of groups is larger than 30.
For example, when ρ = 0.6, ω = 0.2 and 1 – γ = 0.90, the
simulated assurance probabilities reported in Table 1 of Zou
are 0.9084, 0.9202, 0.9454, and 0.9768 for (G , N ) = (196, 2),
(120, 3), (84, 5), and (65, 10), respectively. It follows from the
asymptotic normal approximation that the corresponding
attained or estimated assurance probabilities are 0.9062,
0.9012, 0.9021, and 0.9088, with the absolute errors 0.0022,
0.0190, 0.0433, and 0.0680, respectively. Moreover, it is note-
worthy that the differences between the simulated assurance
probability and estimated assurance probability forω = 0.3 are
more prominent because the approximation deteriorates for
smaller values of G .

To further demonstrate the discrepancy between the two
sample size procedures in Eqs. 12 and 13, extensive exami-
nations were conducted for a wide range of model settings.
Specifically, the model configurations were chosen with the
assurance level 1 – γ = 0.90, the interval bound ω = 0.2 and
0.3, the number of subjects per group N = 2, 3, 5, 10, 20, and
the population ICC value ρ = 0–0.90 with an increment of 0.1.
Following the same notion in the study of expected width, the
numerical investigations included sample size calculations,
simulated one- and two-sided coverage probabilities, simulat-
ed assurance probabilities, estimated assurance probability,
and associated errors. For brevity, Tables 8 and 9 present the
computed sample sizes for ω = 0.2 with N = 5 and 10,
respectively. Also, the empirical results associated with ω =
0.3 are illustrated in Tables 10 and 11 for N = 5 and 10,
respectively.

According to the computed sample size G presented in
Tables 1, 2, 3, 4, 8, 9, 10, and 11 for the same value of N , it
often requires a larger sample size to meet the necessary
precision of assurance probability than the control of a desig-
nated expected width. The pattern of results between the two
precision principles is similar to those reported in Kupper and
Hafner (1989) and Shieh and Jan (2012). More important, the
coverage behavior of the exact confidence intervals and the
assurance performance of the exact sample size procedure
maintain their excellence for all the model configurations
examined here. In contrast, the approximate and equidistant
interval procedure still demonstrates the same disadvantage of
over- and underestimated one-sided coverage probabilities for
small ICC values. For example, in the case of ρ = 0.1,G = 37,
N = 10 in Table 9, the resulting errors of the upper and lower
97.5 % confidence intervals of 0.0195 and −0.0334 suggest
that the two confidence limits are both smaller than the

respective exact value. Regarding the accuracy of the approx-
imate sample size formula given in Eq. 13, the procedure does
not always guarantee the precision performance for the exam-
ined cases with varied combinations of ρ,G , and N . Although
there are some absolute errors within a small range of 0.01 or
0.02, the incurred largest absolute errors are 0.0944, 0.0728,
0.0958, and 0.0983 for (ρ, G ) = (0.5, 95), (0.5, 69), (0.2, 43),
and (0.6, 31) in Tables 8, 9, 10, and 11, respectively. For
illustration, the errors between the simulated assurance prob-
ability and estimated assurance probability of the exact ap-
proach and the approximate method in Table 11 are plotted in
Fig. 2 as a supplement. Hence, the accuracy of the simple

Table 12 Number of subjects per group of the exact approach for 1 –α =
0.95, P(W ≤ 0.2) = 0.9, and the number of groupsG = 20, 40, 60, 80, and
100

G 20 40 60 80 100
ρ N N N N N

0 10 7 5 5 4

0.1 45 10 7 5 5

0.2 >2,000 22 9 6 5

0.3 >2,000 >2,000 12 7 5

0.4 >2,000 >2,000 15 7 5

0.5 >2,000 >2,000 15 7 5

0.6 >2,000 >2,000 12 6 4

0.7 >2,000 >2,000 6 4 3

0.8 >2,000 6 3 3 2

0.9 5 2 2 2 2
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Fig. 2 The performance of assurance probability withN = 10, 1 – γ = 0.9,
andω = 0.3
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formula is inconsistent. These findings demonstrate the short-
coming of the existing method of Zou (2012) and the adequa-
cy of the presented exact sample size technique.

Design II: the number of groups is specified

The exact computation of assurance probability can be
readily modified for determining the necessary number
of subjects to attain the desired assurance probability
when the number of groups is already decided. The
exemplified sample size calculations of this design set-
ting are demonstrated in Table 12 for 1 – α = 0.95,
P (W ≤ 0.2) = 0.9, the number of groups G = 20, 40,
60, 80, and 100, and ρ = 0–0.9 with an increment of
0.1. Essentially, the computed numbers of subjects per
group are larger than those in Table 5, but they still
possess the same relationship with ρ and G as in the
expected width criterion.

Design III: total cost is fixed and the assurance probability
needs to be maximized

To extend the applicability of the suggested exact confidence
intervals and assurance probability principle, the general cost
function defined in Eq. 11 can be employed to determine the
optimal sample size (G , N) with fixed total cost. It is straight-
forward to adjust the proposed algorithm for the minimization
of expected width to the maximization of assurance probabil-
ity. Hence, the computations require only someminor changes
of computer code and do not involve any extra complexity and
effort. For ease of comparison with the outcomes of the
expected width criterion, Table 13 shows the optimal sample
sizes (G , N) and estimated assurance probability of the exact
procedure when the maximum number of subjects is C = 300
for 1 –α = 0.95, interval boundω = 0.2, and ρ = 0–0.9 with an
increment of 0.1. It is interesting to note that the optimal

combinations (G , N) are not necessarily identical even when
the total costs are fixed as 300 in both precision settings.

Design IV: target assurance probability is fixed and the total
cost needs to be minimized

When the assurance performance is set at a given level, it is of
practical value to adopt the optimal design with the least cost.
The optimal (G , N) solution can be obtained from the pre-
scribed three-step procedure by replacing the expected width
calculation with the evaluation of assurance probability. The
usefulness of this design scheme is explicated for the special
concern that the overall cost is the total number of subjects.
Accordingly, Table 14 contains the optimal sample sizes (G ,
N) and total number of subjects for the exact 95 % interval
procedure to have the assurance probability P (W ≤ 0.2) ≥ .9
when the total number of subjects needs to be minimized. As
was expected, the required total numbers of subjects or cost is
substantially greater than those with similar configurations in
Table 7 for the expected width principle.

Conclusions

For advance design of reliability studies, instead of conducting
hypothesis testing with sufficient power, an alternative way to
plan a study is to control the precision of the confidence interval.
Within the context of a one-way random effects model, a variety
of approximate confidence intervals of ICC have been proposed
in the literature. Special attention has been focused on the
confidence interval constructed with the asymptotic normality
and Fisher’s variance estimator of ICC(1). Although its closed-
form expression is easy to apply and permits a simple derivation
of explicit sample size formulas for some design structures, the
desirable properties of coverage probability and interval width
remain the major and decisive factors for selecting an interval

Table 14 Optimal sample sizes (G , N), and total number of subjects of
the exact procedure when the total number of subjects needs to be
minimized for 1 – α = 0.95 and assurance probability P(W ≤ 0.2) = 0.9

ρ G N GN Estimated Assurance Probability

0 13 15 195 0.9055

0.1 52 7 364 0.9119

0.2 89 5 445 0.9208

0.3 114 4 456 1.0000

0.4 114 4 456 1.0000

0.5 143 3 429 0.9065

0.6 119 3 357 0.9092

0.7 88 3 264 0.9052

0.8 81 2 162 0.9021

0.9 35 2 70 0.9067

Table 13 Optimal sample sizes (G , N) and estimated assurance proba-
bility of the exact procedure when the maximum number of subjects is C
= 300 for 1 – α = 0.95, and interval bound ω = 0.2

ρ G N GN Estimated Assurance Probability

0 25 12 300 0.9994

0.1 37 8 296 0.5873

0.2 30 10 300 0.0656

0.3 3 100 300 0.0147

0.4 3 100 300 0.0083

0.5 100 3 300 0.0341

0.6 100 3 300 0.5131

0.7 100 3 300 0.9835

0.8 100 3 300 1.0000

0.9 148 2 296 1.0000
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procedure. Detailed numerical examinations were made to eval-
uate the coverage behavior of the approximate interval method
and the overall performance of the associated sample size
techniques. The comprehensive results showed that the trade
of high accuracy for computational simplicity may not always
be a wise bargain. According to these findings, the lack of
reliable and extended sample size methods for different design
schemes impedes the approximate interval procedure as a well-
founded method for practical applications. In order to facilitate
the application of the exact confidence intervals, exact sample
size procedures are developed for various allocation and cost
design schemes under both the expected width and assurance
probability criteria. In addition, computer programs are present-
ed to aid the usefulness and implementation of the proposed
techniques for the optimal design of reliability studies.
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