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This paper proposes several Concordance Correlation Coefficient (CCC) indices to
measure the agreement among k raters, with each rater having multiple (m) readings
from each of the n subjects for continuous and categorical data. In addition, for normal
data, this paper also proposes the coverage probability (CP) and total deviation index
(TDI). Those indices are used to measure intra, inter and total agreement among
all raters. Intra-rater indices are used to measure the agreement among the multiple
readings from the same rater. Inter-rater indices are used to measure the agreement
among different raters based on the average of multiple readings. Total-rater indices
are used to measure the agreement among different raters based on individual readings.
In addition to the agreement, the paper also assess intra, inter, and total precision
and accuracy. Through a two-way mixed model, all CCC, precision and accuracy,
TDI, and CP indices are expressed as functions of variance components, and GEE
method is used to obtain the estimates and perform inferences for all the functions of
variance components. Each of previous proposed approaches for assessing agreement
becomes one of the special case of the proposed approach. For continuous data, when
m approaches �, the proposed estimates reduce to the agreement indices proposed
by Barnhart et al. (2005). When m = 1, the proposed estimate reduces to the ICC
proposed by Carrasco and Jover (2003). When m = 1, the proposed estimate also
reduces to the OCCC proposed by Lin (1989), King and Chinchilli (2001a) and
Barnhart et al. (2002). When m = 1 and k = 2, the proposed estimate reduces to the
original CCC proposed by Lin (1989). For categorical data, when k = 2 and m = 1,
the proposed estimate and its associated inference reduce to the kappa for binary data
and weighted kappa with squared weight for ordinal data.
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1. INTRODUCTION

Measuring agreements between different methods or different raters have
received a great deal of attention recently. Cohen (1960, 1968) and Fleiss et al.
(1969), Fleiss and Cohen (1973) proposed kappa and weighted kappa to measure
agreement for binary or ordinal data. Lin (1989, 1992, 2000, 2003) proposed the
Concordance Correlation Coefficient (CCC), the Total Deviation Index (TDI) and
Lin et al. (2002) proposed the Coverage Probability (CP) to measure agreement
for continuous data. Lin defined the CCC to be the product of precision and
accuracy, which is intuitive and very easy to understand. Both Cohen and Lin
considered the case of measuring agreement between two raters, with each rater
measures each of the n subjects once. Robieson (1999) proved that the CCC equals
to kappa for binary data and weighted kappa with the squared weight set for
ordinal data. Generalized Estimating Equations (GEE) approach was introduced to
agreement assessment by several authors starting in 2000: Williamson et al. (2000)
proposed modelling kappa by GEE approach for categorical data. Barnhart et al.
(2002, 2005) proposed modelling CCC by GEE approach for continuous data. The
advantages about GEE approach are: a) the pairwise agreements (kappa or CCC)
among k raters can be modelled with covariates adjusted. b) this approach doesn’t
require the full knowledge about the distribution of the data. c) the estimates and
the inferences for the estimates can be obtained simultaneously. For categorical
data, Williamson et al. (2000) considered the case of measuring kappa between
any two of the k raters, with each rater measuring each of the n subjects once.
For continuous data, Barnhart et al. (2005) considered the case of measuring
CCC, among any two and among all k raters, with each rater measuring each
of the n subjects multiple times (independent replications). Barnhart et al. (2005)
proposed a series of indices (intra-rater CCC, inter-rater CCC, and total CCC)
and estimate those indices and their inferences by GEE method. For agreement
among k raters, with each rater measuring each of the n subjects once, King
and Chinchilli (2001a) proposed a generalized CCC, which can be reduced to
kappa and weighted kappa for categorical data and original CCC for continuous
data. For normal data where each rater measures each of the n subjects once,
Carrasco and Jover (2003) recognized that the overall concordance correlation
coefficient proposed by Lin (1989), Barnhart et al. (2002) and King and Chinchilli
(2001a) are the same and it is a special version of the Intra-class Correlation
(ICC) (Bartko, 1966; Fisher, 1925; Fleiss, 1986; Shrout and Fleiss, 1979). Carrasco
and Jover (2003) proposed to estimate CCC by variance components method
(Searle et al., 1992) with a two-way mixed no interaction model using maximum
likelihood (ML) or restricted maximum likelihood (REML) approaches. Through
their model, CCC can be used to measure the agreement among k raters, with
each rater measuring each of the n subjects once. This paper proposes an approach
which integrates the approaches by Barnhart et al. (2005) and Carrasco and Jover
(2003).

This paper is structured as follows: in Section 2, we introduce a unified
approach which can be used for continuous, binary, and ordinal data. In Section 3,
we provide the simulation results in assessing the performance of the unified
approach. In Section 4, we give two examples to illustrate the use of the unified
approach. Finally, we draw conclusions and provide some discussions in Section 5.
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2. METHOD

Suppose each of the k raters or methods measuring each of the n subjects m
replicated times. The model we use for measuring agreement is

yijl = � + �i + �j + �ij + eijl (1)

Here, yijl stands for the lth reading from subject i given by rater j� with
i = 1� 2� � � � � n� j = 1� 2� � � � � k, and l = 1� 2� � � � � m. The reading can be continuous,
binary or ordinal response. � is the overall mean. �i is the random subject effect
�∼�0� �2

�		 with equal second moments across raters. �ij is the random interaction
effect between rater and subject (∼�0� �2

� 		 with equal second moments across raters.
Similarly, we assume eijl is the random error effect (∼�0� �2

e		. �j is the rater effect.
Assume �j is fixed and

∑k
j=1 �j = 0. Even though �j is a fixed effect, we still compute

the variance among all raters, which is denoted as

�2
� =

∑k−1
j=1

∑k
j′=j+1��j − �j′	

2

k�k− 1	
(2)

Based on the above model, we propose a series of indices to measure agreement,
precision, and accuracy. We use ȳij . to denote the average of m readings from subject
i given by rater j, ȳi�� to denote the average of all km readings from subject i� and
ȳ�jl to denote the average of n readings from rater j in its lth replication and yijl to
denote any reading l from subject i given by rater j.

2.1. Intra-Rater Agreement

For a given rater, the intra-rater precision between any two replications, l and
l′ is

CCCintra = 
intra = cov�yijl� yijl′	√
�var�yijl		

√
�var�yijl′		

∣∣∣∣
j�l�l′	

= �2
� + �2�

�2
� + �2

� + �2
e

� (3)

Here, for each rater j� 
intra measures the proportion of the variance that is
attributable to the subjects. Based on the proposed model, this proportion is the
same for all k raters. Therefore, the intrarater agreement CCCintra equals to 
intra�

This agreement index is heavily dependent on the total variability (total data range).
To examine the absolute agreement independent of the total data range, for

k = 2 and m = 1, Lin (2000, 2003) and Lin et al. (2002) proposed two agreement
indices based on mean squared deviation (MSD): Total Deviation Index (TDI) and
Coverage Probability (CP), where TDI� is

�� = 
−1

(
1− 1− �

2

)
���� (4)

and CP� is

�� = 1− 2�1− 
��/���	� = x2��2/�2� 1	� (5)
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�2 is MSD = E�yil − yi2	
2 for k = 2, m = 1. 
 is the cumulative normal distribution

and ��� is the absolute value. TDI (CP) is an approximate measure that captures a
large proportion, CP, of data that are within a TDI boundary. Both TDI and CP
depend on the normality assumption, and the approximations are good only when
the relative bias square is small (Lin, 1992).

When measuring intra-rater agreement, we use �2intra to denote the MSD
between two replications l and l′ for rater j.

�2intra = E�yijl − yijl′	
2

= ��j − �j	
2 + 2��2

� + �2
� + �2

e	− 2��2
� + �2

� 	

= 2�2
e � (6)

Thus, TDIintra��	 can be expressed as

�intra��	 = 
−1

(
1− 1− �

2

)√
�2�2

e	� (7)

and CPintra��	 can be expressed as

�intra��	 = 1− 2
[
1− 


(
�/
√
�2�2

e	
)]

(8)

When the residual standard deviation becomes proportional to the measurement, we
apply the natural log transformation of the data and then compute the agreement
statistics. Under this situation, TDI�% (anti-transform the TDI� and subtract 1),
which measures a per cent change rather than an absolute deviation, will be used.
The TDI�% is defined as

��% = 100�exp���	− 1�%� (9)

To compute CP based on a percent change criterion, we need to convert the percent
change to log scale based on Equation (9).

2.2. Inter-Rater Agreement

Since there are m replicated readings for subject i given by rater j, the average
of those m readings could be used to measure the inter-rater agreement. Inter-rater
agreement is a measure of agreement based on the average of multiple readings
from each rater. Since readings from different raters have different expectations,
inter-rater agreement CCCinter consists of two parts: precisioninter and accuracyinter .
The CCC becomes


c�inter = 1−
E
[∑k

j=1�ȳij�−ȳi��	
2

�k−1	

]
E
[∑k

j=1�ȳij�−ȳi��	
2

�k−1	 � ȳi1�� ȳi2�� � � � � ȳik� ind
]

= �2
�

�2
� + �2� + �2e

m
+ �2

�

� (10)
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The precision index becomes


inter = 
inter ��j�j′	 =
cov�ȳij�� ȳij′ �	√

�var�ȳij�	
√
�var�ȳij′	

∣∣∣∣
jj′

= �2
�

�2
� + �2

� + �2e
m

� (11)

The accuracy index becomes

�a�inter =
�2
� + �2

� + �2e
m

�2
� + �2

� + �2e
m
+ �2

�

� (12)

the MSD becomes

�2inter = 2
(
�2
� + �2

� +
�2
e

m

)
� (13)

The TDI and CP become

�inter��	 = 
−1

(
1− 1− �

2

)√(
2�2

� + 2�2
� + 2

�2
e

m

)
� (14)

and

�inter��	 = 1− 2
[
1− 


(
�/

√(
2�2

� + 2�2
� + 2

�2
e

m

))]
� (15)

Here, 
c�inter is the product of 
inter and �a�inter . The accuracy index measures how
close raters’ means are. The definition of accuracy is some what different to that
originally given by Lin (1989). Since in the proposed model, variances are assumed
to be the same for different raters, the ratio of variances can’t be included into
the accuracy index. Note that the approach proposed by Barnhart et al. (2005)
allows for different variances among raters. The inter-rater agreement is a measure
of inter agreement based on the average of m readings made by each rater. Thus
this index depends on the number of replications (m). The inter-CCC in Barnhart
et al. (2005) is a measure of inter agreement based on the true readings from each
rater. Thus it doesn’t depend on the number of replications. That’s why the inter-
CCC from Barnhart et al. (2005) equals to the limit of our CCCinter as the number
of replications, m, goes to infinity. The approach proposed by Barnhart et al. (2005)
allows for different intra rater coefficients.

2.3. Total Agreement

Since there are m replicated readings for subject i given by rater j� any one
of the m replicated readings could be used to measure the inter-rater agreement.
Total agreement is a measure of agreement based on any individual reading from



634 LIN ET AL.

each reader. Thus this index does not depend on the number of replications.
The corresponding indices are defined as:


c�total = 1−
E
[∑k

j=1�yijl−ȳi�l	
2

�k−1	

]
E
[∑k

j=1�yijl−ȳi�l	
2

�k−1	

∣∣ yi1l� yi2l� � � � � yiklind]
= �2

�

�2
� + �2

� + �2
e + �2

�

� (16)


total = 
total��j�j′	 =
cov�yijl� yij′l′	√

�var�yijl		
√
�var�yij′l′		

= �2
�

�2
� + �2

� + �2
e

� (17)

�a�total =
�2
� + �2

� + �2
e

�2
� + �2

� + �2
e + �2

�

� (18)

�2total = 2
(
�2
� + �2

� + �2
e

)
� (19)

�total��	 = 
−1

(
1− 1− �

2

)√(
2�2

� + 2�2
� + 2�2

e

)
� (20)

and

�total��	 = 1− 2
[
1− 


(
�/
√(

2�2
� + 2�2

� + 2�2
e

))]
(21)

2.4. Estimation and Inference

In order to estimate all indices and make related statistical inferences, the
mean for each rater and all variance components, �1� �2� � � � � �k� �

2
�� �

2
e� �

2
� , and �2

�,
need to be estimated first. Based on model (1) and balanced data, all variance
components can be expressed as follows.

�2
e =

∑n
i=1

∑k
j=1 �

2
ij

nk
� (22)

where �2
ij stands for the conditional variance of Yijl given i and j.

�2
� =

2
∑k−1

j=1

∑k
j′=j+1

∑m
l=1

∑m
l′=1 �jj′ll′

m2k�k− 1	
(23)

where �jj′ll′ stands for the conditional covariance of Yijl and Yij′l′ given j� j′� l and l′.

�2
� = A+ B − C −D� (24)
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where

A =
∑k

j=1

∑m
l=1 �

2
jl

m2k
� (25)

and �2
jl stands for the conditional variance of Yijl given j and l.

B = 2
∑k

j=1

∑m−1
l=1

∑m
l′=l+1 �jll′

m2k
� (26)

where �jll′ stands for the conditional covariance of Yijl and Yiji′ , given j� l, and l′.

C = 2
∑k−1

j=1

∑k
j′=j+1

∑m
l=1

∑m
l′=1 �jj′ll′

m2k�k− 1	
= �2

�� (27)

and

D =
∑n

i=1

∑k
j=1 �

2
ij

mnk
= �2

e

m
� (28)

Above equations show that each of the four variance components can be expressed
as functions of all variances and pairwised covariances. Thus even though in
the proposed unified approach, we assume the homogeneity of all variances, the
estimates are the same as the Overall Concordance Correlation Coefficient (OCCC)
proposed by Lin (1989), King and Chinchilli (2001a), and Barnhart et al. (2002),
where they didn’t use the assumption of homogeneity of all variances.

The following system of equations (see Appendix A) are used to estimate each
of rater means and all variance components, �1� �2� � � � � �k� �

2
�� �

2
�� �

2
� � �

2
e :

n∑
i=1

F ′
i H

−1
i �YYi − �i	 = 0� (29)

where

YYi =



�yi11 + yi12 + · · · + yi1m	/m

· · ·
�yij1 + yij2 + · · · + yijm	/m

· · ·
yik1 + yik2 + · · · + yikm/m

1
k�k−1	

∑k−1
j=1

∑k
j′=j+1�ȳij� − ȳij′ �	

2

2
m2k�k−1	

∑k−1
j=1

∑k
j′=j+1

∑m
l=1

∑m
l′=1��yijl − ȳ·jl	�yij′l′ − ȳ·j′l′	�

1
k

∑k
j=1

[∑m
l=1�yijl−ȳij�	

2

�m−1	

]
1

m2k

∑k
j=1

∑m
l=1�yijl − ȳ·jl	2 + 2

m2k

∑k
j=1

∑m−1
l=1

∑m
l′=l+1�yijl − ȳ·jl	�yijl′ − ȳ·jl′	


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�i = E�YYi	 =



�1

·
�j

·
�k

�2
� + �2e

m
+ �2

�

�2
�

�2
e

�2
� + �2e

m
+ �2

�



�

Hi = diag�Var�YYi		, and Fi = ��i

���1������k��
2
���

2
���

2
� ��

2
e 	
. Based on the estimates and

inferences estimates for all means and variances components, delta method is
used to obtain the estimates and inferences of estimates for all indices (see
Appendix B). When performing inferences on CCC-indices and precision indices,
Z-transformation is used. When performing inferences on accuracy and CP indices,
logit transformation is used. When performing inferences on TDIs, the natural log
transformation is used.

For ordinal and binary data, when k = 2 and m = 1, the above GEE estimates
of CCC reduce into kappa and weighted kappa with square distance function
(Cohen, 1960, 1968; Robieson, 1999). In addition, its variances (Wu, 2005) reduce
to the variances of kappa and weighted kappa (Fleiss et al., 1969).

3. SIMULATION STUDIES

In order to evaluate the performance of the GEE approach for estimation
and inference of the proposed indices and to compare the proposed indices against
other existing methods, simulation studies are conducted for different types of data:
binary data, ordinal data, and normal data. For each of the three types of data,
we consider three cases. Case one: k equals to 2 and m equals to 1. Case two: k
equals to 4 and m equals to 1. Case three: k equals to 2 and m equals to 3. For
each case, we generate 1000 random samples of size 20. For binary and ordinal
data, we consider two situations: inferences obtained through transformations
(z-transformations for CCC and precision indices, logit transformation for accuracy
indices) and inferences obtained without transformations. For normal data, we only
consider inferences obtained through transformations. In addition to the above
transformation, we consider logit transformation for CP and log transformation
for TDI. Simulation results are reported in Tables 1–5. For each table, the first
column “THEORETICAL” stands for the theoretical value for this case. The second
column “MEAN” stands for the mean of the 1000 estimated indices from the 1000
random samples. The comparisons between the first column and the second column
are used to evaluate the robustness of the estimates. The third column “STD(EST)”
stands for the standard deviation of the 1000 estimated indices from the 1000
random samples. The fourth column “MEAN(STD)” stands for the mean of the
1000 estimated standard errors. The comparison between the third and the fourth
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Table 1 Binary data simulation results: with transformation

Stat Theoretical Mean Std (Est) Mean (Std) Sig

Case one: k = 2, m = 1
CCC 0�54992 0�56439 0�27613 0�25906 0�034
precision 0�59774 0�61211 0�26173 0�24256 0�072
accuracy 0�92000 0�92965 1�11350 1�14846 0�073
CCCcarrasco 0�54992 0�57826 0�28222 0�21477 0�04

Case two: k = 4, m = 1
CCC 0�62739 0�62709 0�22486 0�20915 0�05
precision 0�66085 0�66820 0�21528 0�18338 0�051
accuracy 0�94937 0�94331 0�83210 1�02063 0�05
CCCcarrasco 0�62739 0�63851 0�22686 0�15799 0�051

Case three: k = 2, m = 3
CCCinter 0�78575 0�77510 0�13063 0�11326 0�045
CCCtotal 0�68243 0�67135 0�13478 0�12264 0�048
precisionintra 0�79838 0�78680 0�09158 0�08958 0�039
precisioninter 0�80590 0�80040 0�11589 0�09804 0�047
precisiontotal 0�69758 0�68940 0�12561 0�11305 0�044
accuracyinter 0�97500 0�96480 0�03698 0�03713 0�061
accuracytotal 0�97829 0�97023 0�03087 0�03820 0�052

column are used to evaluate the robustness of the variance estimates. The fifth
column “SIG” stands for the proportion of estimates which are outside the 95%
confidence interval at � = 0�05.

For binary and ordinal data, we generate data from an underlying mul-
tivariate normal distribution and partition the responses into categories. When
we generate the multivariate normal data, we specify the correlation in advance.
When we partition the responses into categories, we specify the margins in
advance. Thus, data sets with given precision and accuracy are generated. Those
theoretical values are reported in each table with their theoretical values, denoted
as “THEORETICAL”.

For binary data with k equals to 2 and m equals to 1, we consider the
correlation equals to 0.6. The margin for the first variable is (0.3, 0.7) and
the margin for the second variable is (0.5, 0.5). For binary data with k equals
to 4 and m equals to 1, we consider four variables x1� x2� x3 and x4 with
vector mean � = �0�55� 0�6� 0�65� 0�8	 and 
12 = 0�75, 
13 = 0�7, 
14 = 0�5, 
23 =
0�8, 
24 = 0�6, and 
34 = 0�6. For binary data with k equals to 2 and m equals
to 3, we consider six variables x11� x12� x13� x21� x22, and x23 with vector mean
� = �0�7� 0�7� 0�7� 0�6� 0�6� 0�6	. The correlation between any two of the first three
variables is 0.8. The correlation between any two of the last three variables is also
0.8. The correlation between any one of the first three variables with any one of
the last three variables is 0.7. The simulation results for binary data are reported
in Tables 1 and 2. In Table 1, all estimates for standard deviations are values
with transformations. All means are obtained through anti-transformations. For all
cases in both Tables 1 and 2, our estimates are very close to their corresponding
theoretical values, and the means of the estimated standard deviations are very close
to their corresponding standard deviations of the estimates. Therefore, our estimates
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Table 2 Binary data simulation results: without transformation

Stat Theoretical Mean Std (Est) Mean (Std) Sig

Case one: k = 2, m = 1
CCC∗ 0�54992 0�53079 0�17595 0�16341 0�053
precision 0�59774 0�58072 0�15967 0�14399 0�057
accuracy 0�92000 0�89841 0�08087 0�07857 0�055
CCCcarrasco 0�54992 0�54021 0�17323 0�14042 0�054

Case two: k = 4, m = 1
CCC 0�62739 0�61950 0�11996 0�12000 0�046
precision 0�66085 0�65969 0�10788 0�09753 0�045
accuracy 0�94937 0�93468 0�04101 0�05507 0�05
CCCcarrasco 0�62739 0�63008 0�11724 0�09293 0�046

Case three: k = 2, m = 3
CCCinter 0�78575 0�80198 0�34795 0�30357 0�047
CCCtotal 0�68243 0�69016 0�25987 0�24204 0�052
precisionintra 0�79838 0�8059 0�27016 0�25605 0�054
precisioninter 0�8059 0�82369 0�33486 0�28528 0�047
precisiontotal 0�69758 0�70699 0�25189 0�23184 0�047
accuracyinter 0�975 0�9796 1�3366 1�5165 0�092
accuracytotal 0�97829 0�9825 1�31543 1�48914 0�091

CCC∗: values are the same as the kappa, both in estimation and in inference.

Table 3 Ordinal data simulation results: with transformation

Stat Theoretical Mean Std (Est) Mean (Std) Sig

Case one: k = 2, m = 1
CCC 0�68569 0�68904 0�19127 0�17947 0�036
precision 0�78193 0�78494 0�15296 0�13975 0�036
accuracy 0�87692 0�88292 0�70825 0�65015 0�033
CCCcarrasco 0�68569 0�69977 0�19281 0�20136 0�036

Case two: k = 4, m = 1
CCC 0�61551 0�61753 0�17087 0�16537 0�058
precision 0�65901 0�65821 0�17336 0�15873 0�059
accuracy 0�93398 0�93086 0�72901 0�83133 0�048
CCCcarrasco 0�61551 0�62925 0�17280 0�15681 0�058

Case three: k = 2, m = 3
CCCintra 0�85000 0�84673 0�19925 0�18690 0�045
CCCinter 0�80573 0�81193 0�26196 0�23396 0�052
CCCtotal 0�72756 0�72674 0�20410 0�18719 0�056
precisionintra 0�85000 0�84673 0�19925 0�18690 0�045
precisioninter 0�83333 0�84398 0�25327 0�22154 0�05
precisiontotal 0�75000 0�75273 0�19698 0�17875 0�06
accuracyinter 0�96688 0�97306 1�34000 1�43990 0�072
accuracytotal 0�97009 0�97593 1�32621 1�42840 0�07
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Table 4 Ordinal data simulation results: without transformation

Stat Theoretical Mean Std (Est) Mean (Std) Sig

Case one: k = 2, m = 1
CCC∗ 0�68569 0�66761 0�10094 0�09282 0�042
precision 0�78193 0�77217 0�06496 0�05549 0�053
accuracy 0�87692 0�86205 0�07033 0�06783 0�047
CCCcarrasco 0�68569 0�67839 0�09942 0�10454 0�042

Case two: k = 4, m = 1
CCC 0�61551 0�60432 0�10504 0�10036 0�05
precision 0�65901 0�64619 0�09943 0�08990 0�054
accuracy 0�93398 0�91750 0�04792 0�05170 0�039
CCCcarrasco 0�61551 0�61588 0�10394 0�09436 0�049

Case three: k = 2, m = 3
CCCinter 0�80573 0�79031 0�09275 0�08441 0�042
CCCtotal 0�72756 0�71032 0�09685 0�09056 0�044
precisionintra 0�85000 0�83862 0�05687 0�05345 0�034
precisioninter 0�83333 0�82520 0�07890 0�06980 0�04
precisiontotal 0�75000 0�73789 0�08756 0�08060 0�043
accuracyinter 0�96688 0�95614 0�03920 0�03710 0�057
accuracytotal 0�97009 0�96093 0�03453 0�03380 0�055

CCC∗: values are the same as the weighted kappa with mean squared weight, both in estimation
and in inference.

are sufficiently good for binary data. We also report the estimates from Carrasco’s
method (Carrasco and Jover, 2003) for the same 1000 samples for cases one and
two. The estimates are denoted as CCCcarrasco. For cases of m = 1 (cases one and
two), our standard error estimates are superior to the estimates from Carrasco’s
method (Carrasco and Jover, 2003) regardless if we use transformation or not. We
point out that the estimates from Table 1 with the estimates from Table 2, the
estimates and their inference are comparable. Therefore, we suggest that for binary
data, a transformation is not necessary.

For ordinal data with k equals to 2 and m equals to 1, we consider the
correlation equals to 0.8, the margin for the first variable is (0.3, 0.3, 0.4) and
the margin for the second variable is (0.25, 0.35, 0.4). For ordinal data with k
equals to 4 and m equals to 1, we consider four variables x1� x2� x3, and x4 with
margins: (0.3, 0.3, 0.4), (0.25, 0.35, 0.4), (0.2, 0.3, 0.5), and (0.4, 0.4, 0.2). The
correlations among all variables are: 
12 = 0�7, 
13 = 0�6, 
14 = 0�75, 
23 = 0�8, 
24 =
0�6, 
34 = 0�5. For ordinal data with k equals to 2 and m equals to 3, we consider
six variables x11� x12� x13� x21� x22, and x23. The first three variables had the same
margin (0.3, 0.3, 0.4). The last three variables had the same margin (0.2, 0.3, 0.5).
The correlation between any two of the first three variables is 0.85. The correlation
between any two of the last three variables is also 0.85. The correlation between
any one of the first three variables with any one of the last three variables is 0.75.
The simulation results for ordinal data are reported in Tables 3 and 4, with Table 3
reporting the results with transformation and Table 4 without transformation. For
both tables, the means of the estimates are very close to the theoretical values,
and the means of the estimated standard errors are very close to the corresponding
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Table 5 Normal data simulation results: with transformation

Stat Theoretical Mean Std (Est) Mean (Std) Sig

Case one: k = 2, m = 1
CCC 0�93101 0�9273 0�2267 0�19793 0�049
precision 0�95 0�95056 0�24215 0�204 0�047
accuracy 0�98001 0�98048 0�99008 1�28836 0�03
TDI0�8 2�15056 2�08287 0�30864 0�27812 0�047
CP2�15 0�79988 0�82004 0�48045 0�42595 0�048
CCCcarrasco 0�93101 0�93062 0�22699 0�21879 0�048

Case two: k = 4, m = 1
CCC 0�855 0�84236 0�17386 0�16003 0�048
precision 0�9 0�89629 0�18422 0�16278 0�043
accuracy 0�95 0�94227 0�45674 0�4754 0�051
TDI0�8 2�239 2�22074 0�17487 0�18929 0�046
CP2�24 0�79998 0�80549 0�25189 0�21629 0�046
CCCcarrasco 0�855 0�84902 0�17468 0�16786 0�047

Case three: k = 2, m = 3
CCCinter 0�90663 0�9044 0�22513 0�1981 0�051
CCC∗∗∗

inter 0�92222 0�92286 0�26495 0�22882 0�05
CCCtotal 0�87699 0�8711 0�19221 0�17166 0�045
precisionintra 0�95 0�94606 0�16939 0�15442 0�059
precisioninter 0�925 0�92649 0�23248 0�20222 0�048
precisiontotal 0�89417 0�89154 0�19165 0�17097 0�048
accuracyinter 0�98014 0�98286 1�12096 1�40166 0�049
accuracytotal 0�98079 0�98351 1�11751 1�39846 0�049
TDIintra�0�8	 1�98537 1�97069 0�15380 0�15054 0�056
TDIinter�0�8	 2�69431 2�61924 0�32198 0�28825 0�045
TDItotal�0�8	 3�14437 3�09558 0�23245 0�21152 0�047
CPintra�1�98	 0�79992 0�80607 0�22064 0�17155 0�059
CPinter�2�69	 0�79995 0�81910 0�49259 0�33847 0�033
CPtotal�3�14	 0�79995 0�81270 0�33810 0�31875 0�042

CCC∗∗∗
inter : calculated by Barnhart’s method.

standard deviations of the estimates. Similar to binary data, we also report the
estimates from Carrasco’s method (Carrasco and Jover, 2003) for cases one and
two in both tables. The estimates from two methods are very close to each other
regardless of transformation being used or not. Thus we conclude that for ordinal
data, transformation is not necessary. Carrasco’s method (Carrasco and Jover,
2003) performs surprising well as ours for ordinal data.

For normal data with k equals to 2 and m equals to 1, we consider precision
equals to 0.95, and accuracy equals to 0.98. For k equals to 4 and m equals to
1, we consider precision equals to 0.9 and accuracy equals to 0.95. For k equals
to 2 and m equals to 3, we consider the within-rater precision equals to 0.95,
between-rater precision equals to 0.925, and the between-rater accuracy equals to
0.98. The simulation results are reported in Table 5 with all standard errors obtained
through transformed data. After we obtain the mean for the transformed data, we
report its anti-transformation values in Table 5. Our estimates resemble their their
theoretical values. Except for CPinter , the means of the estimated standard error are
very close to the corresponding standard deviations of the estimates. For cases of
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m = 1, our CCCs are very close to that obtained from Carrasco’s method (Carrasco
and Jover, 2003). For case of k = 2 and m = 3, the inter-rater agreement calculated
from Barnhart’s (Barnhart et al., 2005) is a little bit larger than our inter-rater
agreement since they assumed m → �. Based on the proceeding simulations results,
we conclude that our method works fairly well for binary data, ordinal data and
normal data, both in estimates and in corresponding inferences.

4. EXAMPLES

In this section, we present two examples based on real data. Both examples
consider replicated readings within each method or equipment.

4.1. Methods Comparison Example

Dispirin crosslinked hemoglobin (DCLHb) is a solution containing oxygen-
carrying hemoglobin. The solution was created as a blood substitute to treat acute
trauma patients and to replace blood loss during surgery. Measurements of DCLHb
in patient’s serum after infusion are routinely performed using a Sigma method. A
method of measuring hemoglobin called the HemoCue photometer was modified to
reproduce the Sigma instrument DCLHb results. To validate this modified method,
serum samples from 299 patients over the analytical range of 50–2000mg/dL were
collected. DCLHb values of each sample were measured simultaneously with the
HemoCue and Sigma methods and each sample were measured twice by each of the
two methods. Similar method comparison examples have been given by Lin (2003)
and Lin et al. (2002), where the averages of the replicated readings were used.

Figures 1 to 3 plot the data for this example: HemoCue method measure 1 vs.
measure 2, Sigma method measure 1 vs. measure 2, the average of the HemoCue
method vs. the average of the Sigma method. The plots indicate that the errors were
rather constant across the data range. Therefore, no log transformation was applied
to the data.

Figure 1 HemoCue method measure 1 vs. measure 2.
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Figure 2 Sigma method measure 1 vs. measure 2.

In terms of TDI and CP indices, the least acceptable agreement is defined as
having at least 90% of pair observations over the entire range within 75mg/dL of
each other if the observations are from the same method, and within 150mg/dL
of each other if the observations are from different methods based on the average
of each method. In terms of CCC indices, the least acceptable agreement is defined
as a within-sample total deviation not more than 7.5% of the total deviation if
observations are from the same method, and a within-sample total deviation not
more than 15% of the total deviation if observations are from different methods.
These translates into a least acceptable CCCintra of 0.9943 (1− 0�0752	, and a least
acceptable CCCinter of 0.9775 (1− 0�152	.

The agreement statistics and their corresponding one-sided 97.5% lower or
upper confidence limits for Example one are presented in Table 6. The CCCinter

Figure 3 HemoCue method’s average measure vs. Sigma method’s average measure.
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Table 6 Agreement statistics and their confidence limits for Example 1

Statistics Estimates 97.5% Confidence limit∗ Allowance

CCCinter 0�9866 0�98153 0.9775
CCCtotal 0�98592 0�98086
precisionintra 0�99860 0�99823 0.9943
precisioninter 0�98664 0�98155
precisiontotal 0�98595 0�98088
accuracyinter 0�99996 0�99742
accuracytotal 0�99996 0�99742
TDIintra�0�9	 41�0903 47�2713 75
TDIinter�0�9	 127�273 149�799 150
TDItotal�0�9 130�548 152�678
CPintra�75	 0�99732 0�99423 0.9
CPinter�150	 0�94745 0�91701 0.9
CPtotal�150	 0�94123 0�91016

∗: for all CCC, precision and accuracy indices, the 97.5% lower limits are reported, for all TDI
indices, the 95% upper limits are reported.

estimate is 0.9866, which means for the average observations from different
methods, the within-sample total deviation is about 11.6% (

√
�1− 0�9866	) of the

total deviations. The 97.5% lower confidence limit for CCCinter is 0.9815, which
is greater than 0.9775. The precisionintra estimate is 0.9986, with a one-side lower
confidence limit of 0.9982. The precisioninter estimate is 0.98664 with a one-sided
lower confidence limit of 0.9815, and the accuracyinter estimate is 0.99996 with
one-sided lower confidence limit of 0.9974. The CCCtotal estimate is 0.9859, which
means for individual observations from different methods, the within-sample total
deviation is about 11.87% of the total deviations. The 97.5% lower confidence limit
for CCCtotal is 0.9809. The precisiontotal estimate is 0.9860 with a one-sided lower
confidence limit of 0.9809, and the accuracytotal estimate is 0.99996 with one-sided
lower confidence limit of 0.9974. The TDIintra�0�9	 estimate is 41.09mg/dL, which
means that 90% of the readings are within 41.09mg/dL of their replicate readings
from the same method. The one-sided upper confidence limit for TDIintra�0�9	 is
47.2713, which is less than 75mg/dL. The TDIinter�0�9	 estimate is 126.16mg/dL,
which means based on the average readings, 90% of the readings are within
126.16mg/dL of their replicate readings from the other method. The one-sided
upper confidence limit for TDIinter�0�9	 is 149.799mg/dL, which is slightly less than
150mg/dL. The TDItotal�0�9	 estimate is 130.55mg/dL, with the one-sided upper
confidence limit as 152.68mg/dL. Finally, the CPintra(75) estimate is 0.9973, which
means that 99% of HemoCue observations are within 75mg/dL of their target
values from same method. The one-sided lower confidence limit for CPintra�75	
is 0.9942, which is larger than 0.9. The CPinter�150	 estimate is 0.9475, which
means that 95% of HemoCue observations are within 150mg/dL of their target
values from the other method based on the average of each method. The one-
sided lower confidence limit for CPinter(150) is 0.9170, which is larger than 0.9. The
CPtotal(150) estimate is 0.9412, which means that 94% of HemoCue observations are
within 150mg/dL of their target values from the other method based on individual
readings. The one-sided lower confidence limit for CPtotal(150) is 0.9102.
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Table 7 Lab one frequency table of first reading (row)
vs. second reading (column)

Negative Positive Highly positive

Negative 6 1 0
Positive 0 49 0
Highly positive 0 0 8

The agreement between HemoCue method and Sigma method is acceptable
with acceptable precision and accuracy, with accuracy a little bit better than
precision.

4.2. Assay Validation Example

In this example, we consider the Hemagglutinin Inhibition (HAI) assay for
antibody to Influenza A (H3N2) in rabbit serum samples from two different labs.
Serum samples from 64 rabbits are measured twice by each method. Antibody level
is classified as: negative, positive, and highly positive (too numerous to count).

Tables 7 to 10 are the frequency tables for within lab and between lab
readings. Tables 7 and 8 are frequency tables of the first reading vs. the second
reading from each lab. Table 9 is the frequency table of the first reading from one
lab vs. the first reading from the other lab. Table 10 is the frequency table of the
second reading from one lab vs. the second reading from the other lab. Those tables
suggest that the within lab agreement is good but the between lab agreement may
not, and lab two tends to report higher values than lab one.

This is an imprecise assay, therefore we allow for looser agreement criteria. In
terms of CCC indices, agreement was defined as a within-sample total deviation not
more than 50% of the total deviation if observations are from the same method,
and a within-sample total deviation not more than 75% of the total deviation if
observations are from different methods. These translates into a least acceptable
CCCintra of 0.75 (1− 0�52), and a least acceptable CCCinter of 0.4375 (1− 0�752	.

The agreement statistics and their corresponding one-sided 97.5% lower
confidence limits are presented in Table 11. The CCCintra was estimated to be
0.88361, which means for observations from the same method, the within-sample
deviation is about 34.1% (

√
�1− 0�88361	) of the total deviations. The 97.5%

lower confidence limit for CCCintra is 0.79692, which is larger than 0.75. The
CCCinter is estimated to be 0.37225, which means for the average observations
from different methods, the within-sample deviation is about 79.2% of the total

Table 8 Lab two frequency table of first reading (row)
vs. second reading (column)

Negative Positive Highly positive

Negative 2 0 0
Positive 0 22 2
Highly positive 0 5 33
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Table 9 Lab one first reading (row) vs. lab two first
reading (column)

Negative Positive Highly positive

Negative 2 5 0
Positive 0 19 30
Highly positive 0 0 8

deviations. The 97.5% lower confidence limit for CCCinter is 0.22039, which is less
than 0.4375. The precisioninter is estimated to be 0.56795 with a one-sided lower
confidence limit of 0.4359, and the accuracyinter is estimated to be 0.65543 with a
one-sided lower confidence limit of 0.51586. The CCCtotal is estimated to be 0.35776,
which means for individual observations from different methods, the within-sample
deviation is about 80.1% of the total deviations. The 97.5% lower confidence limit
for CCCtotal is 0.2097. The precisiontotal is estimated to be 0.53489 with a one-sided
lower confidence limit of 0.3999, and the accuracytotal was estimated to be 0.66885
with a one-sided lower confidence limit of 0.53561.

Overall, the agreement between two labs readings is not acceptable even
though within lab agreement is much better than the inter lab agreement. The
agreement within each lab can be obtained by applying kappa or weighted kappa
to each lab separately.

5. DISCUSSION

We have proposed a series of indices for assessing agreement, precision and
accuracy for the case of multiple raters each with multiple readings. Those indices
can be used to assess intra, inter, and total agreement for both continuous and
categorical data. All those indices are expressed as functions of variance components
through a two-way mixed model, and GEE approach is used to estimate all indices
and perform their inferences. All indices are summarized in Table 12.

All previously mentioned approaches for assessing agreement become one of
the special case of our approach. For continuous data: when m → �, the proposed
estimates reduce to the agreement indices proposed by Barnhart et al. (2005). When
m= 1, the proposed estimates reduce to the ICC proposed by Carrasco and Jover
(2003). When m= 1, the proposed estimate also reduces to the OCCC proposed by
Lin (1989), King and Chinchilli (2001a) and Barnhart et al. (2002). When m= 1
and k= 2, the proposed estimate reduces to the original CCC proposed by Lin
(1989). For categorical data, when k= 2 and m= 1, the proposed estimate reduces

Table 10 Lab one second reading (row) vs. lab two
second reading (column)

Negative Positive Highly positive

Negative 2 4 0
Positive 0 23 27
Highly positive 0 0 8
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Table 11 Agreement statistics and their confidence limits for
Example 2

Statistics Estimates 97.5% Confidence limit∗ Allowance

CCCinter 0.37225 0.22039 0�4375
CCCtotal 0.35776 0.20970
precisionintra 0.88361 0.79692 0�75
precisioninter 0.56795 0.43590
precisiontotal 0.53489 0.39991
accuracyinter 0.65543 0.51586
accuracytotal 0.66885 0.53561

∗: for all CCC, precision and accuracy indices, the 97.5% lower
limits are reported.

to the kappa for binary data and weighted kappa with squared weight for ordinal
data, in both estimates and inferences. In addition, we decompose the CCC into
precision and accuracy components for a deeper understanding of the sources of the
disagreement.

The concept of accuracy and precision can also be applied to categorical data.
For continuous data, the above ICC like indices are heavily dependent on the total
variability (total data range). Therefore, these indices are not comparable if the
ranges of the data are not comparable. We also have proposed absolute indices, TDI
and CP, which are independent of the total data range. These absolute indices are
easily understandable by our clients. However, there absolute indices are valid only
when the relative bias squared is small enough (Lin, 2000, 2003; Lin et al., 2002)
and that the normality assumption is required.

Based on our unified approach, covariates adjustment can be easily applied by
modifying the system of equations (27). The entire algorithm can be generalized to
include and compare various functions of variance components.

Table 12 Summary of agreement indices based on functions of variance components

Statistics Intra Inter Total m = 1

CCC
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There are two aspects of this unified approach that can be developed in the
future. First, for categorical and non-normal continuous data, we may include the
link functions, such as, log or logit, in the GEE method. We expect the approach
become more robust to different types of data after including link functions in
the GEE method. Second, current variance components functions are based on
balanced data, we can modify those functions to take care of the missing data.

For computing the above agreement statistics, a SAS macro is available
(http://www.uic.edu/hedayat), which can be downloaded by users.

APPENDIX A: EXPRESSIONS FOR HI AND FI IN EQUATION (26)

For

YYi =


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2

2
m2k�k−1	

∑k−1
j=1

∑k
j′=j+1

∑m
l=1

∑m
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we have

Hi = diag�Var�YYi		 =
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2
e� �

2
� 	
� (37)

and

Fi =
(

1k 04∗4
04∗4 f4∗4

)
�
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where

f4∗4 =


1 0 1/m 1

0 1 0 0

0 0 1 0

0 1 1/m 1

 �

APPENDIX B: VARIANCES FOR ALL INDICES

We use delta method to obtain the variances of estimates for all indices.
These are:

var�
c� ̂intra	
≈ �1− 
c�intra	

2�var��2
�	+ var��2

� 	+ 2cov��2
�� �

2
� 	�+ �
c�intra	

2var��2
e	

��2
� + �2

� + �2
e	

2

− 2�1− 
c�intra	�
c�intra	�cov��
2
�� �

2
e	+ cov��2

e� �
2
� 	�

��2
� + �2

� + �2
e	

2
(38)

var�
c� ̂inter 	
≈ �1− 
c�inter 	

2var��2
�	+ �
c�inter 	

2�var��2
�	+ var��2

e	/�m
2	+ var��2

� 	

��2
� + �2

� + �2
� + �2

e/m	2

+ 2cov��2
�� �

2
� 	+ 2cov��2

�� �
2
e	/m+ 2cov��2

e� �
2
� 	/m�

��2
� + �2

� + �2
� + �2

e/m	2

− 2�1− 
c�inter 	�
c�inter 	�cov��
2
�� �

2
�	+ cov��2

�� �
2
� 	+ cov��2

�� �
2
e	/m�

��2
� + �2

� + �2
� + �2

e/m	2
� (39)

var�
̂inter 	
≈ �1− 
inter	

2var��2
�	+ �
inter	

2�var��2
e	/�m

2	+ var��2
� 	+ 2cov��2

e� �
2
� 	/m�

��2
� + �2

� + �2
e/m	2

− 2�1− 
inter	�
inter	�cov��
2
�� �

2
� 	+ cov��2

�� �
2
e	/m�

��2
� + �2

� + �2
e/m	2

(40)

var�
c� ̂total	
≈ �1− 
c�total	

2var��2
�	+ �
c�total	

2�var��2
�	+ var��2

e	+ var��2
� 	

��2
� + �2

� + �2
� + �2

e	
2

+ 2cov��2
�� �

2
� 	+ 2cov��2

�� �
2
e	+ 2cov��2

e� �
2
� 	�

��2
� + �2

� + �2
� + �2

e	
2

− 2�1− 
c�total	�
c�total	�cov��
2
�� �

2
�	+ cov��2

�� �
2
� 	+ cov��2

�� �
2
e	�

��2
� + �2

� + �2
� + �2

e	
2

� (41)
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and

var�
̂total	 ≈ �1− 
total	
2var��2

�	+ �
total	
2�var��2

e	+ var��2
� 	+ 2cov��2

e� �
2
� 	�

��2
� + �2

� + �2
e	

2

−2�1− 
total	�
total	�cov��
2
�� �

2
� 	+ cov��2

�� �
2
e	�

��2
� + �2

� + �2
e	

2
(42)

When estimating the variances of CCC-indices and precision indices, we use
the z-transformation, Zindex = 1

2 ln
1+index
1−index

. Thus the transformed variances for all
CCC and precision (
) indices are var�zindex	 = var�index	

�1−�index	2	2
, with the index being

CCCintra, CCCinter , CCCtotal, 
inter , or 
total.
When estimating the variances of TDI’s, we use the log transformation based

on MSD, W = ln��2	� The transformed variances for W become var��2	

�4
For variance

of MSD, we have

var��2̂intra	 = 4�var��2
e		� (43)

var��2̂inter 	 = 4
[
var��2

�	+ var��2
� 	+

var��2
e	

�m2	
+ cov��2

�� �
2
� 	+

cov��2
�� �

2
e	

m

+ cov��2
e� �

2
� 	

m

]
(44)

and

var��2̂total	= 4�var��2
�	+ var��2

� 	+ var��2
e	+ cov��2

�� �
2
� 	+ cov��2

�� �
2
e	+ cov��2

e� �
2
� 	��

(45)

Note that TDI index is simply a scale transformation of the square root of
MSD.

When estimating the variances of accuracy and CP indices, we use the logit
transformation, Lindex = ln� index

1−index
	 The transformed variances for accuracy or CP

are var�Lindex	 = var�index	

�index	2�1−index	2
with index being accuracyintra, accuracytotal, CPintra,

CPinter or CPtotal. For accuracy indices,

var��a� ̂inter 	 = �1− �a� ̂inter 	2�var��2
�	+ var��2

� 	+ var��2
e	/�m

2	+ 2cov��2
�� �

2
e	/m

��2
� + �2

� + �2
� + �2

e/m	2

+ 2cov��2
�� �

2
� 	+ 2cov��2

� � �
2
e	/m	�+ ��a�inter 	

2var��2
�	

��2
� + �2

� + �2
� + �2

e/m	2

− 2�1− �a�inter 	��a�inter 	�cov��
2
�� �

2
�	+ cov��2

�� �
2
e	/m+ cov��2

�� �
2
� 	�

��2
� + �2

� + �2
� + �2

e/m	2

(46)
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and

var��a� ̂total	 = �1− �a�total	
2�var��2

�	+ var��2
� 	+ var��2

e	+ 2cov��2
�� �

2
e	

��2
� + �2

� + �2
� + �2

e	
2

+ 2cov��2
�� �

2
� 	+ 2cov��2

� � �
2
e	�+ ��a�total	

2var��2
�	

��2
� + �2

� + �2
� + �2

e	
2

− 2�1− �a�total	��a�total	�cov��
2
�� �

2
�	+ cov��2

�� �
2
e	+ cov��2

�� �
2
� 	�

��2
� + �2

� + �2
� + �2

e	
2

(47)

For CP indices,

var��̂��		 = e

�2
�·	
�2
�·	

(
1+ �2�·	

�2�·	

)2 var��2�·		

8��2�·	�2�·	
(48)

where �2�·	, represents intra, inter and total MSD values shown in Equations (5), (13)
and (18), respectively, and var��2�·		 can be found in Equations (43)–(45) respectively.

We obtain the GEE estimates for above means and variances components as
well as their variance–covariances interatively.
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