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SUMMARY 
A new reproducibility index is developed and studied. This index is the correlation between the two 
readings that fall on the 450 line through the origin. It is simple to use and possesses desirable 
properties. The statistical properties of this estimate can be satisfactorily evaluated using an inverse 
hyperbolic tangent transformation. A Monte Carlo experiment with 5,000 runs was performed to 
confirm the estimate's validity. An application using actual data is given. 

1. Introduction 

In an assay validation or an instrument validation process, the reproducibility of the 
measurements from trial to trial is of interest. Also, when a new assay or instrument is 
developed, it is of interest to evaluate whether the new assay can reproduce the results 
based on a traditional gold-standard assay (Westgard and Hunt, 1973; Bauer and Kennedy, 
1981). Such validation processes are often evaluated by using the Pearson correlation 
coefficient, the paired t-test, the least squares analysis of slope (= 1) and intercept (= 0), 
the coefficient of variation, or the intraclass correlation coefficient. There' are drawbacks to 
all of these, however, in that none alone can fully assess the desired reproducibility 
characteristics. For example, to evaluate the blood cell counter for hematology analysis in 
a laboratory, it is desirable to have duplicates of the same blood sample measurement by 
the counter at different times (usually at most 1 day apart) yield results as close together as 
possible. If we plot the first measurement against the second measurement of the red blood 
cell counts for all blood samples available, we would like to see, within a tolerable error, 
that the measurements fall on a 45? line through the origin (45'). The Pearson correlation 
coefficient measures a linear relationship but fails to detect any departure from the 45' line 
(see Figure 1). The paired t-test fails (see Figure 2) to detect poor agreement in pairs of data 
such as (1, 3), (2, 3), (3, 3), (4, 3), and (5, 3). Combining the above two methods cannot 
detect poor agreement in pairs of data such as (1, 2.8), (2, 2.9), (3, 3.0), (4, 3.1), and (5, 
3.2). The least squares approach fails to detect departure from intercept equal to 0 and 
slope equal to 1 if data are very scattered (see Figure 3, lower plot). In other words, the 
more the data are scattered (nonreproducible), the less chance one could reject the 
hypothesis. The least squares approach can reject a highly reproducible assay due to very 
small residual error (see Figure 3, upper plot). This is also true if the paired t-test is used 
(see Figure 2, lower plot). The coefflcient of variation and the intraclass correlation 
coefficient allow duplicate readings to be interchangeable. In other words, these methods 
consider duplicate readings as replicates (random) rather than two distinct readings. Two 

Key words: Accuracy; Asymptotic normality; Concordance correlation coefficient; 450 line through 
the origin; Precision; Z-transformation. 

255 



256 Biometrics, March 1989 

45. 

g~ ~~~~ocation shift 

*<locloation and scale shift 

z~~~~ 

S 8tr ~~cae shit 

Figure 1. Cases when Pearson correlation coeff'icient fails to detect nonreproducibility. 
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Figure 2. Cases when paired t-test can be misleading. 
Ho: Means are equal 
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Figure 3. Cases when least squares analysis can be misleading. 
Ho: Intercept = 0 and slope-1 

distinct readings would occur in the case of a first reading (earlier) versus a second reading 
(later) or as a reading of assay A versus a reading of assay B. 

This study proposes a desirable reproducibility index, to be called a concordance 
correlation coefficient, which evaluates the agreement between two readings (from the 
same sample) by measuring the variation from the 450 line through the origin (the 
concordance line). 

2. The Concordance Correlation Coefficient 

Let us assume that pairs of samples (Yil, Yi2), i = 1, 2, . . ., n, are independently selected 
from a bivariate population with means A1 and g2 and covariance matrix 

/2 0if12 (J122 

12 0'2 

The degree of concordance between Y1 and Y2 can be characterized by the expected value 
of the squared difference, i.e., 

-Y2)2] = (gi - g)2 + (oj2 + o-2-2) 

= (LI - L2)' + (cr1 - 02)2 + 2(1 - p)O102, 

where p is the Pearson correlation coefficient. This also represents the expected squared 
perpendicular deviation from the 45' line, multiplied by 2. 

If each pair, Y, and Y2, in the population are in perfect agreement, E[(Y,-Y2)2] would 
be 0. The following transformation is proposed in order for the value of the index to be 
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scaled between -1 and 1: 

E[(Yj - 2)2] 
Pc 21 + a2 + (mt -2)2 

Expected squared perpendicular deviation from 45' line 
Expected squared perpendicular deviation from 45' line 

when Y1 and Y2 are uncorrelated 

or, 

20-12 

P 
2 
1 + U2 + (Al - - PC 

where 

Cb = [(v + 1/v + u2 )/2]-', 

v = -1/02 = scale shift, 

U = (Al- 2)/V-7I =location shift relative to the scale. 

Here, 0 < Cb < 1 is a bias correction factor that measures how far the best-fit line deviates 
from the 45' line (measure of accuracy). No deviation from the 45' line occurs when Cb= 

1. The further Cb is from 1, the greater the deviation is from the 45' line. The Pearson 
correlation coefficient p measures how far each observation deviated from the best-fit line 
(measure of precision). 

If we let 01 = (f1/U2)P and O% = Al - gI2 represent the regression slope and intercept, 
respectively, from the conditional distribution of Y, given Y2, then 

2A, S2 
PC 2 + o-2) + [(i0-0) +( - 

This concordance correlation coefficient, Pc, possesses the following characteristics: 

(ii) Pc = 0 if and only if p = 0. 
(iii) Pc = p if and only if 01 = 02 and ,u, = A2 

(iv) Pc = ?+1 if and only if 
(a) (l -A2 )2 + (ai - 0-2)2 + 2a, 02(1 T p) = 0, or equivalently, 
(b) p = ?1, 0l = 02, and ,u = A2, or equivalently, 
(c) each pair of readings is in perfect (1) agreement (for example, 1, 1; 2, 2; 3, 3; 4, 4; 

5, 5) or in perfect reversed (-1) agreement (for example, 5, 1; 4, 2; 3, 3; 2, 4; 
1, 5). 

This concordance correlation coefficient evaluates the degree to which pairs fall on the 
45' line. It contains the measurements of accuracy (Cb) and precision (p). Any departure 
from this line would produce Pc < 1 even if p = 1. 

For n independent pairs of samples, it is natural to use the sample counterparts; i.e., let 

^ ~~2S12 
PC = S2 + S2S+ - 

where 

in ~~s2 !i 
n 1 n 
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and 

in 
S12 E (Yi, - Y)(Yi2- Y2). 

n j=1 

3. Inference 

Let us assume that ', is the sample concordance correlation coefficient of paired samples 
from a bivariate normal distribution. Using the transformation theory of functions of 
asymptotically normal vectors (Serfling, 1980, p. 122), we can show that ', is a consistent 
estimator of Pc and has an asymptotic normal distribution with mean Pc and variance (see 
the Appendix) 

2 1 -2[(1 _ p2)p2( _ p2)/p2 4p3(1 
_ 

PC)u2/P 2p4U4/P2]. (1) 

One can improve the normal approximation by using the inverse hyperbolic tangent 
transformation (or Z-transformation), 

Z= tanh-(kc) = 2 ln 1 + Pc 
2 1 - PC 

This yields a better asymptotic normality with mean Z = ln[(1 + pc)/(l -Pc)] and 
variance (see the Appendix) 

z2 
1 ( - 

p2)p2 4p2(1 
- pC)u2 22p-U4 12 

n -2 _I 
2+ 

( P 

One can replace the parameters of (1) and (2) with their sample counterparts to derive 
confidence intervals or to do hypothesis testing. Note that use of the Z-transformation 
approach when assessing the confidence interval for Pc not only bounds the value within 
the open interval (-1, 1), but also provides a more realistic asymmetric interval. 

4. Monte Carlo Simulation 

To assess the asymptotic normality, a Monte Carlo simulation was performed for five 
underlying values of Pc with samples sizes of n = 10, n = 20, and n = 50. For each of the 
15 situations, 5,000 runs were performed. Paired samples were generated from each of the 
following bivariate normal distributions (five cases), using Statistical Analysis System (SAS) 
software: 

Case 1. Mean (0, 0) and covariance matrix 

(1 .95) 
\.95 1 / 

Pc = .95 with no difference in location and scale parameters. 
Case 2. Mean (- 5'I/2, V1T/2) and covariance matrix 

1( .95) 
9.95 1pa e 

Pc = .905 with a slight shift in location parameters. 
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Case 3. Mean (- 1.1/2, +'iT/2) and covariance matrix 

1. 12 .95 x 1.1 x .9 
.95 x 1.1 x .9 92 ) 

Pc = .887 with slight differences in both location and scale parameters. 
Case 4. Mean (- V'iT/2, V'iT/2) and covariance matrix 

.92 .8 x .9 x 1. 1 
(.8 x .9 x 1.1 1. 1 .2 1 

Pc = .747 with slight differences in both location and scale parameters, and with a 
smaller correlation coefficient. 

Case 5. Mean (- V72/2, V72/2) and covariance matrix 

(. :3 )2 .5 x 4 X 2 

\.5 x 3- X 23 2 )2 

Pc = .360 with large differences in both location and scale parameters, and with 
correlation coefficient .5. 

In each run, Pc, Z, and their standard errors based on the sample counterparts of (1) and 
(2) were calculated. The mean, standard deviation (Std), test statistic value (D), and P- 
value for normality based on 5,000 runs are reported in Table 1. The test statistic, based 
on a Kolmogorov goodness-of-fit test, is the greatest distance between the observed 
cumulative density function and the normal cumulative density function. The asymptotic 
variances of pc were right on the target when sample sizes were 20 or larger. They tended 
to underestimate in cases 1, 2, and 3 when sample sizes were 10. For this reason, 200 
bootstrap (Efron, 1979) samples were used for each run to estimate kc and Z when n = 10. 
The bootstrap estimates of the standard errors were calculated for each run by taking the 
standard deviation of those 200 ,c's and Z's. The means of the estimators based on 5,000 
runs are reported in Table 2. The "bootstrapped" Spc tended to overestimate in cases 1, 2, 
and 3, and to underestimate in case 5. Based on the value of D in Table 1, the distribution 
of ,c was closer to normality when Pc was closer to 0, and/or when n became larger. 

The asymptotic standard error of Z using sample counterparts of (2) was very close to 
the true standard error in each of the 15 situations in this study. The bootstrap estimates 
tended to underestimate when n = 10 and were very close to the value of the square 
root of expression (2) (using sample counterparts) multiplied by J(n - 2)/n. In Table 1, 
the distribution of Z was much closer to normality than that of 'c since the D value of Z 
was much smaller in each of the 15 situations. The normality hypothesis was not rejected, 
even with 5,000 runs, except for case 4, n = 20 and case 5, n = 10. Even for these two 
situations, the distributions were sufficiently close to normality for practical purposes. The 
largest D value of Z, among the 15 situations considered, was .017: 

The asymptotic normality of 'c and Z for data from nonnormal distributions was also 
examined. Additional Monte Carlo simulations were performed, using SAS software, for 
data from the uniform and Poisson distributions. Paired samples were generated for cases 
1, 3, and 5 from the uniform distribution after standardization. Standardization refers to 
uniform variates on the interval (0, 1) minus .5, multiplied by . Paired samples were 
also generated for the same cases from the Poisson distribution after standardization. 
Standardization here refers to Poisson variates with mean 9 minus 9, divided by 3. The 
sample sizes used were n = 10 and n = 50. The results are provided in Table 3 for the 
uniform distribution and in Table 4 for the Poisson distribution. 
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Table 1 
Mean, standard deviation (Std), and test of normality based on simulation of 5,000 runs 

generated from normal distribution 
n = 10 n = 20 n = 50 

Normality Normality Normality 

Mean Std D P-value Mean Std D P-value Mean Std D P-value 

Case 1. PC = .950; Z = 1.832 

Pc .937 .051 .136 <.01 .942 .027 .092 <.01 .947 .015 .052 <.01 
SPC .044 .026 .015 
Z 1.782 .344 .011 .119 1.807 .231 .008 >.15 1.822 .143 .007 >.15 
S2 .341 .233 .144 

Case 2. PC = .905; Z = 1.499 

Pc .874 .078 .111 <.01 .891 .045 .078 <.01 .900 .025 .050 <.01 
SPc .069 .044 .026 
Z 1.434 .312 .012 .070 1.468 .212 .010 >.15 1.484 .130 .008 >.15 
S2 .310 .218 .137 

Case 3. PC = .887; Z = 1.408 

Pc .855 .080 .101 <.01 .873 .047 .076 .01 .882 .027 .039 <.01 
SPc .075 .048 .029 
Z 1.344 .286 .007 >.15 1.378 .193 .011 >.15 1.397 .119 .008 >.15 
S2 .293 .205 .129 

Case 4. Pc = .747; Z = .966 

Pc .699 .153 .082 <.01 .723 .099 .056 <.01 .738 .060 .038 <.01 
SPc ..149 .101 .062 
Z .929 .307 .011 .139 .945 .210 .013 .044 .958 .131 .008 >.15 
S2 .310 .218 .137 

Case 5. Pc = .360; Z = .377 

Pc .323 .200 .021 <.01 .338 .136 .020 <.01 .353 .088 .014 <.01 
SP^c ..195 .140 .089 
Z .352 .236 .017 <.01 .360 .158 .008 >.15 .372 .101 .011 .147 
S2 .231 .162 .102 

Table 2 
Actual and bootstrapped estimation of ap, and oj (n = 10) 

based on 5,000 runs 

Case Bootstrapped Actual 

1 S^ .063 .051 
S2 .314 .344 

2 S^ .087 .078 
Sz .284 .312 

3 Sp, .090 .080 
S2 .268 .286 

4 S, .151 .153 
- S2 .280 .307 

5 S^ .172 .200 
S2 .207 .236 
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Table 3 
Mean, standard deviation (Std), and test of normality based on simulation of 5,000 runs 

from the uniform distribution 

n = 10 n =50 

Normality Normality 

Mean Std D P-Value Mean Std D P-Value 
Case 1. pC = .950; Z = 1.832 

Pc .930 .052 .132 <.01 .947 .015 .052 <.01 
SPc .046 .015 
Z 1.768 .352 .010 >.15 1.821 .142 .007 >.15 
S2 .350 .145 

Case 3. PC = .887; Z = 1.408 
Pc .857 .081 .102 <.01 .883 .026 .042 <.01 
SPC .076 .029 
Z 1.349 .283 .013 .054 1.400 .115 .011 >.15 
S2 .299 .130 

Case 5. PC = .360; Z = .377 
Pc .315 .200 .030 <.01 .352 .085 .018 <.01 
SPC .199 .089 
Z .342 .231 .017 <.01 .371 .098 .008 >.15 
S2 .233 .102 

Table 4 
Mean, standard deviation (Std), and test of normality based on simulation of 5,000 runs 

from the Poisson distribution 

n= 10 n=50 

Normality Normality 

Mean Std D P-Value Mean Std D P-Value 
Case 1. Pc = .950; Z = 1.832 

Pc .932 .050 .129 <.01 .947 .015 .059 <.01 
SPc .044 .015 
Z 1.779 .344 .006 >.15 1.821 .145 .009 >.15 
Sz .341 .144 

Case 3. Pc = .887; Z = 1.408 
Pc .856 .080 .107 <.01 .882 .026 .048 <.01 
SPc .074 .028 
Z 1.346 .279 .013 .037 1.397 .116 .010 >.15 
Sz .288 .129 

Case 5. Pc = .360; Z = .377 
Pc .315 .196 .024 <.01 .353 .085 .017 <.01 
SPc .193 .088 
Z .342 .229 .018 <.01 .372 .098 .006 >.15 
Sz .227 .102 

The asymptotic normality of Pc and Z for samples from the uniform (short-tailed, 
symmetric) and Poisson (long-tailed, asymmetric to the right) distributions is very similar 
to that for samples from the normal distribution. These results demonstrate that Z is robust 
for samples from uniform and Poisson distributions. A very encouraging result is that it is 
robust even with a sample size of 10. 
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5. Examples 

Two examples are considered that investigate the following two questions: 

(1) Can a "Portable $ave" machine (actual name withheld) reproduce a gold-standard 
machine in measuring total bilirubin in blood? 

(2) Can an in-vitro assay for screening the toxicity of biomaterials reproduce from trial to 
trial? [This example uses part of the data from Johnson et al. (1985). The two assays 
in this example are the best and the worst in terms of reproducibility, respectively, in 
that data set.] 

To study the first question, blood samples were taken from 10 animals, one sample per 
animal. Each sample was measured for bilirubin level by three operators using a Portable 
$ave machine and a gold-standard Hitachi machine. The salesman of the Portable $ave 
machine claimed that it can reproduce the results measured by the Hitachi machine, and 
that "anyone on your staff can run tests." Therefore, this study was conducted at Baxter 
by three operators. One was a well-trained medical technician in the laboratory (denoted 
by M.T.); one was a staff nurse who represented the targeted personnel to operate this 
machine with minimal training (denoted by Nurse); and one was a temporary summer 
trainee with no training who was the son of a vice president of the laboratory (denoted by 
S-VP). 

The results are plotted in Figure 4. This plot indicates that the Portable $ave machine is 
reproducible if it is performed by well-trained personnel (symbol M), but not by personnel 
with minimum or no training (symbols N and S). Table 5 presents the statistical outcome 
using a variety of different analyses. The first two rows present ', and a 95% confidence 
interval for Pc for each operator. These figures clearly reflect high reproducibility performed 
by the M.T. (.995), mediocre reproducibility by the S-VP (.838), and poor reproducibility 
by the nurse (.624). For more detailed information, the next three rows show excellent 
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Figure 4. Portable $ave versus Hitachi by three operators for measuring bilirubin in blood. 
M: M.T.; N: Nurse; S: S-VP 
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Table 5 
Statistical analyses to evaluate the reproducibility of "Portable 

$ave" machine by 3 operators 
Methoda M.T. Nurse S-VP 

pc .995 .624 .838 
95% CI (.988, .998) (.292, .822) (.520, .952) 

-.041 .768 .377 
v .916 1.878 .805 
r .999 .936 .917 

Ppt .227 .012 .037 
PIS <.000 1 .002 .017 
CV 7.98% 72.8% 35.8% 
ri . 7 -.995 .617 .848 

a= r[(v + 1/6 + ej2)/2]I'. 
95% CI: confidence interval for pc using Z-transformation. 

= (I- Y2)/VSIS2. 
6 = SI/S2. 
r = Pearson correlation coefficient. 
p, = P-value using paired t-test. 
PI, = P-value using least squares analysis. 
CV = Coefficient of variation. 
r= Intraclass correlation coefficient. 

precision (r = .999), with minimum location shift (ui = -.04 1) and scale shift (vi = .916) by 
the M.T. Also shown in these three rows are moderate precision (r = .936), with poor 
location shift (ui = .768) and scale shift (v = 1.878) by the nurse. The laboratory refused to 
purchase this machine because it worked well only when it was used by well-trained 
personnel, contradicting the claim made by the salesman. 

If one chose to use the paired t-test (Ppt in Table 5), luckily one would draw the correct 
conclusions in this example. If one chose to use the least squares analysis (P1s in Table 5), 
the hypothesis of zero intercept and unit slope by the M.T. would be strongly rejected (P 
< .0001), much more so than that by the nurse (P = .002) and by the S-VP (P = .017), 
due to a near-zero residual error. The least squares analysis results contradict intuition. 
The smaller the residual error (more precision), the more likely one would reject zero 
intercept and unit slope. On the other hand, the larger the residual error (less precision), 
the less likely one would reject. 

The coefficient of variation (CV in Table 5) works well in this example, although one 
might decide that a CV of 7.98% (by the M.T.) is not acceptable (greater than 5%). The 
intraclass correlation coefficient (ri in Table 5) works very well and is nearly identical to 
P, in this example. This coefficient will give results similar to those for ', most of the time. 
However, it will give a negative value when the paired readings are uncorrelated. It cannot 
distinguish bias from imprecision, which can be characterized by u, v, and r when Pc is 
used. 

In the second example, 10 materials, varying from nontoxic to highly toxic, were 
evaluated by two biochemical in-vitro assays. The two assays were cellular adenosine 
triphosphate activity using cell line 76 (ATP-76), and cellular adhesion using cell line 74 
(CLA-74). These two assays are commonly used in screening the toxicity of materials for 
use in medical devices. The results are expressed as percent cell function. The lower the 
value, the higher the toxicity. Two independent trials, approximately 1 week apart, were 
performed. The purpose was to assess the reproducibility between trials of each assay for 
material screening. The data are plotted in Figure 5. 

Figure 5 shows that ATP-76 had much better agreement than CLA-74 between the two 
trials. Table 6 presents the statistical outcome. ', clearly demonstrates good trial-to-trial 
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Figure 5. Trial-to-trial reproducibility of two in-vitro assays. 
A: ATP-76; C: CLA-74 

Table 6 
Statistical analyses to evaluate the trial-to-trial 

reproducbility by A TP-76 and CLA-74 in-vitro assays 

Methoda ATP-76 CLA-74 

Pc .969 .283 
95% CI (.874, .992) (-.245, .681) 

u .153 .743 
v .998 .723 
r .980 .376 

Ppt .049 .087 
PNs .156 .151 
CV 11.46% 17.57% 
ri .971 .250 

a c = r[(v + 1/6 + u2)/2]l 
95% CI: 95% confidence interval for Pc using Z-transformation. 

u =V(I - F2)/ -S 2. 
= SI/S2. 

r= Pearson correlation coefficient. 
p, = P-value using paired t-test. 
piS = P-value using least squares analysis. 
CV = Coefficient of variation. 
ri = Intraclass correlation coefficient. 

reproducibility for ATP-76 (PC = .969) and poor reproducibility for CLA-74 (P, = .283 with 
a 95% CI containing 0). The paired t-test marginally rejected the reproducibility of ATP- 
76 (P = .049) while it failed to reject the reproducibility of CLA-74 (P = .087). The least 
squares analysis rejects neither. Due to a higher mean value of CLA-74 compared with that 
for ATP-76, the coefficient of variation fails to reflect the poorer reproducibility of CLA- 
74 (17.6%). The intraclass correlation coefficient works well in this example. 
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6. Conclusion 

The concordance correlation coefficient, which is used to evaluate the agreement between 
paired readings, has desirable characteristics. It is simple to use. Its estimate using the 
sample counterparts is consistent and has asymptotic normality for bivariate normal data. 
However, its statistical properties (consistency and asymptotic normality) can be much 
improved by using the inverse hyperbolic tangent transformation (Z-transformation). It is 
also robust against samples from the uniform and Poisson distributions even with small 
sample sizes. 

7. Future Studies 

This index can be generalized to evaluate agreements among more than two readings. The 
multiple-reading counterpart is 

2 2ij 
E i= I~ EJ=I (-j= - p)2 + 2 E r >. 

This index may also be a good statistic for use in goodness-of-fit tests. For example, to test 
for normality, one can measure the agreement between the cumulative density function 
versus the cumulative normal density function through this index, rather than taking the 
maximum deviation, as in the Kolmogorov test. 

This index can also be applied when Y, is random and Y2 is fixed, in which case the 
standard error has a simpler structure. The index can be used to characterize agreement 
between the observed measurements and the theoretical (expected) values. These possibil- 
ities are under investigation. 
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RESUMm 

On presente et on etudie un nouvel indice de reproductibilite. Cet indice est la correlation entre les 
deux lectures qui tombent sur la premiere bissectrice (45 degres). It est simple a utiliser et a les 
proprietes souhaitees. Les proprietes statistiques de cette estimation peuvent etre evaluees de fa9on 
satisfaisante en utilisant la transformation de l'arctangente hyperbolique. On a fait une simulation de 
Monte Carlo avec 5,000 tirages pour confirmer la validite de l'estimation. On donne une application 
utilisant des donnees reelles. 
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APPENDIX 

Let (Yl , Y12), ..., (Yn,, Yn2) be independent observations on a bivariate normal distribution. The 
concordance correlation coefficient is 

20I2 
PC = 2 + U2 + (Al - M2) 

The Z-transformation of PC is Z= 1 ln[(1 + Pc)/(l - Pc)] = tanh-lpc. 
The sample analogues are 

2SI2 
PC =S2 + S2 +( - 

F,2) 

and 

Z = tanh-1 c. 

We first consider the asymptotic normality of Z. It will then be straightforward to obtain the 
asymptotic normality of c. by simply applying the hyperbolic tangent transformation of Z. 
The asymptotic normality of Z is algebraically less cumbersome. The transformation may be expressed 
as Z = g(v), where 

V = (VI, V2, V3, V4, V5) = Y2, n Y1 Y12, Y2 

and 

g(vI, V2, V3, V4, V5) = ln [1 + 4(5 + 2 -2 

The vector v is expressed as functions of sample moments and has asymptotic 5-variate normality 
with mean E(v) = (Al, A2, 0-i + /4, 0-2 + 82, 012 + A1I2) and variance n- Z, where 

T' = I Wij 15s 5 

WI4 = 0I, WI 2 = W21 = 0-12, W22 = 072, 

W13= W31 =2A 1, W23 = W32= 2/t1c012, W33=2o74+4 <A4, 

W14= W41 = 2M2 0212, W24 = W42=2A2 20- , 

W34 = W43 = 2l2 + 4M1I2 012, W44 = 2o72 + 4 2A2, 

WI5= WV5 =A2.f0- +M1i012, W25= WVS2 = 2 + 2012, 

W35 = W53 = 20712 14 + 20-12 1 + 2/1M2I21, 

W45 = W54 = 2o712 2 + 20-12f + 2M1M20f2, 

= 0-2 02 + A2/02 + A2Lf02 + 0-7 + 2MM20-2 

which is the covariance matrix of (YI, Y2, y2, Y2, Y, Y2). It follows from the theory on functions of 
asymptotically normal vectors (Serfling, 1980, Corollary 3.3) that Z is asymptotically normal with 
mean Z and variance n d Z d', where 

d 'a (d | 2ag I ) 



268 Biometrics, March 1989 

The elements of d are 

a9g /1t2 

I 
( 
v9 =E(v) 0 2 + 

o2 + 20-12 + (A1 
- 

122)2 

dg |1 

2 (92 v=E(v) 072- 
+ 

oJ2 + 20-12 + (/1' 
- 

12)2 

d3 =d4= - | = g 
(91)3 v=E(v) (91)4 v=E(v) 

-0712 

[0 
2 + C2 + 2(12 + (A1 - A2)2][U2 + 2 - 2CI2 + (A1 -12)2] 

(91)5 v =E(V) 

(2r + C2) + (A1 - 12)2 

[c02 + o2 + 2(12 + (A1 - A2)2]I2 + 072- 20f12 + (1 - 12)2] 

After straightforward but tedious algebraic calculation, it can be shown that the variance of Z is 

21W n 

= 1 F(i - p2)p2 4P3(l -pC)U2 2p4u 4 
n [(1 - P2)P2 p(l - P2)2 p2(l - P2)2 

One may substitute in the above expressions sample counterparts that are consistent estimates. 
One may replace the n with n - 2 for less bias, as evident in the Monte Carlo study in this paper. 
The asymptotic normality of 'c can be obtained by letting 

Pc = tanh(Z). 
From the theory on functions of asymptotically normal statistics (Serfling, 1980, Theorem 3.1), ?c is 
asymptotically normal with mean Pc and variance 

(1 -PC ) Z. 

This asymptotic variance depends on the parameter pc much more than C(z does. Like Fisher's 
Z-transformation on the sample correlation coefficient, the Z approaches normality much more 
rapidly than the Pc as confirmed by the Monte Carlo study in this paper. 
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