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SUMMARY

Kappa coe�cients are measures of correlation between categorical variables often used as reliability or
validity coe�cients. We recapitulate development and de�nitions of the K (categories) by M (ratings)
kappas (K ×M), discuss what they are well- or ill-designed to do, and summarize where kappas now
stand with regard to their application in medical research. The 2×M (M¿2) intraclass kappa seems the
ideal measure of binary reliability; a 2× 2 weighted kappa is an excellent choice, though not a unique
one, as a validity measure. For both the intraclass and weighted kappas, we address continuing problems
with kappas. There are serious problems with using the K ×M intraclass (K¿2) or the various K ×M
weighted kappas for K¿2 or M¿2 in any context, either because they convey incomplete and possibly
misleading information, or because other approaches are preferable to their use. We illustrate the use
of the recommended kappas with applications in medical research. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

‘Many human endeavors have been cursed with repeated failures before �nal success is
achieved. The scaling of Mount Everest is one example. The discovery of the Northwest
Passage is a second. The derivation of a correct standard error for kappa is a third’. This wry
comment by Fleiss et al. in 1979 [1] continues to characterize the situation with regard to
the kappas coe�cients up to the year 2001, including not only derivation of correct standard
errors, but also the formulation, interpretation and application of kappas.
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The various kappa coe�cients are measures of association or correlation between variables
measured at the categorical level. The �rst formal introductions of kappa were those, more
than 40 years ago, by Scott [2] and Cohen [3]. Since then, the types of research questions
in medical research that are well addressed with kappas (for example, reliability and validity
of diagnosis, risk factor estimation) abound, and such areas of research have become of
ever growing interest and importance [4]. Not surprisingly, numerous papers both using and
criticizing the various forms of kappas have appeared in the statistical literature, as well as
in the psychology, education, epidemiology, psychiatry and other medical literature. It is thus
appropriate, despite the many existing ‘revisits’ of kappas [5–15], to take stock of what kappas
are, what they are well-designed or ill-designed to do, and to bring up to date where kappas
stand with regard to their applications in medical research.
To set the stage for discussion let us consider �ve major issues concerning kappas that are

often forgotten or misinterpreted in the literature:

1. Kappa has meaning beyond percentage agreement corrected for chance (PACC). Sir
Alexander Fleming in 1928 discovered penicillin by noticing that bacteria failed to grow
on a mouldy Petri dish. However, in summarizing current knowledge of penicillin and
its uses, a mouldy Petri dish is at most a historical curiosity, not of current relevance to
knowledge about penicillin. In much the same way, Jacob Cohen discovered kappa by
noticing that this statistic represented percentage agreement between categories corrected
for chance (PACC). Since then, there has also been much expansion and re�nement of
our knowledge about kappa, its meaning and its use. Whether to use or not use kappa has
very little to do with its relationship to PACC. With regard to kappa, that relationship
is a historical curiosity. Just as some scientists study moulds, and others bacteria, to
whom penicillin is a side issue, there are scientists speci�cally interested in percentage
agreement. To them whether rescaling it to a kappa is appropriate to its understanding and
use is a side issue [16–20]. Consequently there are now two separate and distinct lines
of inquiry, sharing historical roots, one concerning use and interpretation of percentage
agreement that will not be addressed here, and that concerning use and interpretation of
kappa which is here the focus.

2. Kappas were designed to measure correlation between nominal, not ordinal, measures.
While the kappas that emerged from consideration of agreement between non-ordered
categories can be extended to ordinal measures [21–23], there are better alternatives
to kappas for ordered categories. Technically, one can certainly compute kappas with
ordered categories, for example, certain, probable, possible and doubtful diagnosis of
multiple sclerosis [24], and the documentation of many statistical computer programs
(for example, SAS) seem to support this approach, but the interpretation of the results
can be misleading. In all that follows, the measures to be considered will be strictly
nominal, not ordered categories.

3. Even restricted to non-ordered categories, kappas are meant to be used, not only as
descriptive statistics, but as a basis of statistical inference. RBI or batting averages in
baseball are purely descriptive statistics, not meant to be used as a basis of statistical
inference. Once one understands how each is computed, it is a matter of personal pref-
erence and subjective judgement which statistic would be preferable in evaluating the
performance of batters. In contrast, means, variance, correlation coe�cients etc., as they
are used in medical research, are descriptive statistics of what is seen in a particular
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sample, but are also meant to estimate certain clinically meaningful population charac-
teristics, and to be used as a basis of inference from the sample to its population. To be
of value to medical research, kappas must do likewise.
Nevertheless, presentations of kappas often do not de�ne any population or any pa-

rameter of the population that sample kappas are meant to estimate, and treat kappas
purely as descriptive statistics [7]. Then discussions of bias, standard error, or any other
such statistical inference procedures from sample to population are compromised. Many
of the criticisms of kappas have been based on subjective opinions as to whether kappas
are ‘fair to the raters’ or ‘large enough’, behave ‘as they should’, or accord with some
personal preference as to what ‘chance’ means [7; 13; 25; 26]. These kinds of discussions
of subjective preferences are appropriate to discussing RBI versus batting average, but
not to estimation of a well-de�ned parameter in a population. We would urge that the
sequence of events leading to use of a kappa coe�cient should be: (i) to start with an
important problem in medical research; (ii) to de�ne the population and the parameter
that the problem connotes; (iii) to discuss how (or whether) sample kappa might esti-
mate that parameter, and (iv) to derive its statistical properties in that population. When
this procedure is followed, it becomes clear that there is not one kappa coe�cient, but
many, and that which kappa coe�cient is used in which situation is of importance.
Moreover, there are many situations in which kappa can be used, but probably should
not be.

4. In using kappas as a basis of statistical inference, whether or not kappas are con-
sistent with random decision making is usually of minimal importance. Tests of the
null hypothesis of randomness (for example, chi-square contingency table analyses) are
well established and do not require kappa coe�cients for implementation. Kappas are
designed as e�ect sizes indicating the degree or strength of association. Thus bias of the
sample kappas (relative to their population values), their standard errors (in non-random
conditions), computation of con�dence intervals, tests of homogeneity etc. are the sta-
tistical issues of importance [27–30]. However, because of overemphasis on testing null
hypotheses of randomness, much of the kappa literature that deals with statistical infer-
ence focuses not on kappa as an e�ect size, but on testing whether kappas are random or
not. In this discussion no particular emphasis will be placed on the properties of kappas
under the assumption of randomness.

5. The use of kappas in statistical inference does not depend on any distributional assump-
tions on the process underlying the generation of the classi�cations. However, many
presentations impose such restricting assumptions on the distributions of pi that may not
well represent what is actually occurring in the population.
The population model for a nominal rating is as follows. Patients in a population

are indexed by i; i=1; 2; 3; : : : : A single rating of a patient is a classi�cation of pa-
tient i into one of K(K¿1) mutually exclusive and exhaustive non-ordered categories
and is represented by a K-dimensional vector Xi=(Xi1; Xi2; : : : ; XiK), where Xij =1, if
patient i is classi�ed into category j, and all other entries equal 0. For each patient,
there might be M (M¿1) such ratings, each done blinded to all the others. Thus any
correlation between the ratings arises from correlation within the patients and not be-
cause of the in�uence of one rater or rating on another. The probability that patient
i (i=1; 2; : : :) is classi�ed into category j (j=1; 2; : : : ; K) is denoted pij , and pi is the
K-dimensional vector (pi1; pi2; : : : ; piK) with non-negative entries summing to 1. In a
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particular population of which patient i is a member, pi has some, usually unknown,
distribution over the K − 1 dimensional unit cube.
For example, when there are two categories (K=2), for example, diagnosis of disease

positive or negative, one common assumption is that the probability that a patient actually
has the disease is �, and that if s=he has the disease, there is a �xed probability of
a positive diagnosis (Xi1 = 1), the sensitivity (Se) of the diagnosis (pi1 =Se); if s=he
does not have the disease (Xi2 = 2), a �xed probability of a negative diagnosis, the
speci�city (Sp) of the diagnosis (1−pi1 =Sp). This limits the distribution of pi1 to two
points, Se and 1− Sp (pi2 = 1− pi1): the ‘sensitivity=speci�city model’ [31].
In the same situation, another model suggested has been the ‘know=guess’

model [25; 32; 33]. In this case, it is assumed that with a certain probability, �1, a
patient will be known with certainty to have the disease (pi1= 1); with a certain proba-
bility, �0, a patient will be known with certainty not to have the disease (pi1= 0). For
these patients, there is no probability of classi�cation error. Finally, with the remaining
probability, 1−�1−�0, the diagnosis will be guessed with probability pi1= �. This limits
the distribution of pi1 to 3 points (1; �; 0).
One can check the �t of any such model by obtaining multiple blinded replicate di-

agnoses per patient. For these two models, three blinded diagnoses per patient would be
required to estimate the three parameters in each model, (�;Se;Sp) or (�1; �0; �), and at
least one additional diagnosis per patient to test the �t of the model. In practice, it is hard
to obtain four or more diagnoses per patient for a large enough sample size for adequate
power, but in the rare cases where this has been done, such restrictive models are often
shown to �t the data poorly [34]. If inferences are based on such limiting distributional
assumptions that do not hold in the population, no matter how reasonable those assump-
tions might seem, or how much they simplify the mathematics, the conclusions drawn
on that basis may be misleading. Kappas are based on no such limiting assumptions.
Such models merely represent special cases often useful for illustrating certain proper-
ties of kappa, or for disproving certain general statements regarding kappa, as they here
will be.

2. ASSESSMENT OF RELIABILITY OF NOMINAL DATA:
THE INTRACLASS KAPPA

The reliability of a measure, as technically de�ned, is the ratio of the variance of the ‘true’
scores to that of the observed scores, where the ‘true’ score is the mean over independent
replications of the measure [35; 36]. Since the reliability of a measure, so de�ned, indicates
how reproducible that measure will be, how attenuated correlations against that measure will
be, what loss of power of statistical tests use of that measure will cause, as well as how
much error will be introduced into clinical decision making based on that measure [37], this
is an important component of the quality of a measure both for research and clinical use.
Since one cannot have a valid measure unless the measure has some degree of reliability,
demonstration of reliability is viewed as a necessary �rst step to establishing the quality of
a measure [14; 38].
The simplest way to estimate the reliability of a measure is to obtain a representative sample

of N patients from the population to which results are to be generalized. (The same measure
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may have di�erent reliabilities in di�erent populations.) Then M ratings are sampled from
the �nite or in�nite population of ratings=raters to which results are to be generalized, each
obtained blinded to every other. Thus the ratings might be M ratings by the same pathologist
of tissue slides presented over a period of time in a way that ensures blindness: intra-observer
reliability. The ratings might be diagnoses by M randomly selected clinicians from a pool
of clinicians all observing the patient at one point in time: inter-observer reliability. The
ratings might be observations by randomly selected observers from a pool of observers, each
observing the patient at one of M randomly selected time points over a span of time during
which the characteristic of the patient being rated is unlikely to change: test–retest reliability.
Clearly there are many di�erent types of reliability depending on when, by whom, and how
the multiple blinded ratings for each patient are generated. What all these problems have in
common is that because of the way ratings are generated, the M successive ratings per patient
are ‘interchangeable’, that is, the process underlying the M successive ratings per patient has
the same underlying distribution of pi, whatever that distribution might be [39].

2.1. The 2× 2 intraclass kappa
The simplest and most common reliability assessment with nominal data is that of two
ratings (M=2), with two categories (K=2). In that case, we can focus on the Xi1 since
Xi2 = 1 − Xi1 and on pi1, since pi2 = 1 − pi1. Then E(Xi1)=pi1, the ‘true score’ for
patient i; E(pi1)=P; variance(pi1)=�2p . Thus by the classical de�nition of reliability, the
reliability of X is variance(pi1)=variance(Xi1)=�2p =PP

′, where P′=1− P.
This intraclass kappa, �, may also be expressed as

�=(p0 − pc)=(1− pc)

where p0 is the probability of agreement, and pc=P2 + P′2, that is, the PACC, for this has
been shown to equal �2p =PP

′ [31]. So accustomed are researchers to estimating the reliability
of ordinal or interval level measures with a product-moment, intraclass or rank correlation
coe�cient, that one frequently sees ‘reliability’ there de�ned by the correlation coe�cient
between test–retest data. In the same sense, for binary data the reliability coe�cient is de�ned
by the intraclass kappa.
The original introductions of kappa [3; 40] de�ned not the population parameter, �, but the

sample estimate k, where the probability of agreement is replaced by the observed proportion
of agreement, and P is estimated by the proportion of the classi�cations that selected cate-
gory 1. This was proposed as a measure of reliability long before it was demonstrated that
it satis�ed the classical de�nition of reliability [31]. Fortunately, the results were consistent.
However, that sequence of events spawned part of the problems surrounding kappa, since it
opened the door for others to propose various sample statistics as measures of binary relia-
bility, without demonstration of the relationship of their proposed measure with reliability as
technically de�ned. Unless such a statistic estimates the same population parameter as does
the intraclass kappa, it is not an estimate of the reliability of a binary measure. However,
there are other statistics when M=2, that estimate the same parameter in properly designed
reliability studies (random sample from the population of subjects, and a random sample of
blinded raters=ratings for each subject), such as all weighted kappas (not the same as an
intraclass kappa as will be seen below), or the sample phi coe�cient, the risk di�erence or
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the attributable risk. Typically these provide less e�cient estimators than does the sample
intraclass kappa.
It is useful to note that �=0 indicates either that the heterogeneity of the patients in the

population is not well detected by the raters or ratings, or that the patients in the population
are homogeneous. Consequently it is well known that it is very di�cult to achieve high
reliability of any measure (binary or not) in a very homogeneous population (P near 0 or 1
for binary measures). That is not a �aw in kappa [26] or any other measure of reliability, or
a paradox. It merely re�ects the fact that it is di�cult to make clear distinctions between the
patients in a population in which those distinctions are very rare or �ne. In such populations,
‘noise’ quickly overwhelms the ‘signals’.

2.2. The K × 2 intraclass kappa
When there are more than two categories (K¿2) both Xi and pi are K-dimensional vectors.
The classical de�nition of reliability requires that the covariance matrix of pi ; �p, be compared
with the covariance matrix of Xi ; �X . The diagonal elements of �p are �jPjP′

j , where �j is the
2× 2 intraclass kappa with category j versus ‘not-j’, a pooling of the remaining categories, Pj
is the E(pij); P′

j =1−Pj. The o�-diagonal elements are �jj∗PjPj∗ ; j �= j∗, with �jj∗ the correlation
coe�cient between pij and pij∗ . The diagonal elements of �X are PjP′

j , and the o�-diagonal
elements are −PjPj∗ .
What has been proposed as a measure of reliability is the K × 2 intraclass kappa

�= trace(�p)=trace(�X )=�(PjP′
j �j)=�(PjP

′
j )

Again it can be demonstrated that this is equivalent to PACC with p0 again the probability
of agreement, now with pc=�PjP′

j .
From the above, it is apparent that to obtain a non-zero K × 2 intraclass kappa requires

that only one of the K categories have non-zero �j. If that one category has reasonable
heterogeneity in the population (PjP′

j large) and has large enough �j, the K × 2 intraclass
kappa may be large.
Consider the special case for K=3, when pi=(1; 0; 0) with probability �, and pi=

(0; 0:5; 0:5) with probability �′=1 − �. In this case category 1 is completely discriminated
from categories 2 and 3, but the decisions between 2 and 3 are made randomly. Then �1 = 1,
and �2 =�3 =�=(� + 1), and the 3× 2 intraclass kappa is 3�=(3� + 1). When �=0:5, for
example, �=0:60, and �2 =�3 = 0:33, even if 2 and 3 are here randomly assigned. Such
a large overall � can be mistakenly interpreted as a good reliability for all three categories,
where here clearly only category 1 is reliably measured.
No one index, the K × 2 intraclass kappa or any other, clearly indicates the reliability of

a multi-category X . For categorical data, one must consider not only how distinct each cat-
egory is from the pooled remaining categories (as re�ected in the �j; j=1; 2; : : : ; K), but
how easily each category can be confused with each other [13; 41]. Consequently, we would
suggest that: (i) multi-category kappas are not used as a measure of reliability with K¿2
categories; (ii) that seeking any single measure of multi-category reliability is a vain e�ort;
and (iii) at least the K individual category �j’s be reported, but that, better yet, methods be
further developed to evaluate the entire misclassi�cation matrix [42]. In particular, the deci-
sion to recommend kappa with two categories, but to recommend against kappa with more
than two categories, is not in�uenced by the fact that kappa is related to PACC in both cases.
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Table I. Estimation of the 2×M intraclass correlation coe�cient in the Periyakoil et al. data,
with s the number of positive (grief) classi�cations from the M=4 raters, fs the proportion of
items with that number, ks the kappa coe�cient based on omitting one subject with s positive

classi�cations, and ws the weight needed to calculate the asymptotic variance.

s fs s=M 1− s=M ks

0 0.2029 0.0000 1.0000 0.5700
1 0.1739 0.2500 0.7500 0.5860
2 0.0870 0.5000 0.5000 0.5918
3 0.1159 0.7500 0.2500 0.5873
4 0.4203 1.0000 0.0000 0.5725

General formula for k: k =1−M�fs(sM)(1− sM)=((M − 1)PP′)
P=�fs(sM)

Jack-knife formulae: Jack-knife k =Nk − (N − 1)average(ks)
Jack-knife SE2 = (N − 1)2s2k =N
s2k =sample variance(ks)

Results from above case: P=0:5942
k =0:5792

Jack-knife k =0:6429

The 2× 2 intraclass kappa seems ideal as a measure of binary reliability, but the K × 2 in-
traclass kappa we recommend against as uninterpretable. What if one had only two categories,
but M¿2 raters?

2.3. The 2×M (multi-rater) intraclass kappa

With only two categories, the reliability coe�cient is still �=�2=PP′, as shown above. The
multi-rater sample kappa statistic [43] is based on comparing pairwise agreement among
the M (M − 1)=2 pairs of raters evaluating each patient with what would be expected if
classi�cations were randomly made. This process has been shown to obtain the equivalent
result as applying the formula for the intraclass � for interval data to these binary data [44].
This statistic estimates the same � as does the 2× 2 intraclass kappa. For a �xed sample size
of subjects, the larger the M , the smaller the estimation error.
There are several ways to estimate intraclass kappa here, but the easiest both for theory

and application requires that the data be organized by s, the number of positive (category 1)
classi�cations per patient (See Table I, column 1), s=0; 1; 2; : : : ; M . The proportion of the
N patients sampled who have s of the M categorizations positive is fs. The formula for
calculation is presented in Table I, along with a demonstration of the calculation of this
statistic based on a study conducted by one of the authors (VSP).
In this case, N=69 items were sampled from the population of items that might be used

to distinguish preparatory grief (category 1) from depression (category 2) in dying adult
patients. The issue was to assess to what extent clinicians could reliably distinguish the two.
Depression, when it exists, is hypothesized to diminish quality of the dying process but can be
e�ectively treated, while normal preparatory grief, when it exists, is hypothesized to be a sign
of positive coping with the dying process that should be facilitated. M=4 expert clinicians
were sampled and complied with classifying each item as more indicative of preparatory grief
or depression. The results appear in Table I, with k=0:579.
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Table II. The population probability distribution of the number of positive responses with
M raters, generated from the sensitivity=speci�city model (model A: Se= 0:60, Sp= 0:99,
�=0:1525) and the know=guess model (model B: �1 = 0:0250, �0 = 0:7875, �=0:4054). Both
models have P=0:10 and �=0:50 to two decimal places. Implication: the distribution of

responses for M¿2 di�er even when P and � are the same.

Number of M=2 M=4 M=6
positive= s A B A B A B

0 85.5% 85.4% 81.8% 81.1% 79.8% 79.6%
1 9.0% 9.0% 5.6% 6.4% 5.4% 3.4%
2 5.5% 5.6% 5.3% 6.5% 2.2% 5.8%
3 5.3% 3.0% 4.2% 5.2%
4 2.0% 3.0% 4.7% 2.7%
5 2.8% 0.7%
6 0.7% 2.6%

While the standard error is known and easily accessible when M=2 [43; 45–47], to date
when M¿2 it is known and easily accessible only under the null hypothesis of random-
ness [43]. The calculation of the standard error in general when M¿2 was described by
Fleiss as ‘too complicated for presentation’ (reference [43], p. 232), referring readers to Lan-
dis and Koch [48]. Not only is this standard error di�cult to access, but also it is not
known exactly how accurate it is for small to moderate sample size. Part of the problem lies
in attempting to obtain a general solution when there are more than two categories (where
intraclass kappa may be misleading), and when the number of ratings per patient is itself
a variable from patient to patient (which may be problematic). The situation with the 2×M
intraclass kappa is much simpler.
For patient i, with probability pi1, the probability that s of the interchangeable independent

M ratings will be positive is the binomial probability (s=0; 1; 2; : : : ; M) with probability pi1
the binomial probability (say Bin(s;pi1; M); s=0; 1; 2; : : : ; M). The probability that a randomly
sample subject will be positive is the expected value of Bin(s;pi1; M) over the unknown
distribution of pi1. This involves moments of the pi1 distribution up to order M . Since P and
� involve only the �rst two moments, the distribution of the number of positive responses is
determined by P and � only when M=2. Consequently the quest for a standard error of the
2×M intraclass sample kappas for M¿2 that involves only parameters P and �, that is, only
moments up to order 2, is one of those futile quests [49]. One might have many di�erent
distributions of pi1 that have the same �rst two moments (P and �) but that di�er in the
higher moments. For each such distribution the sample distribution for the 2×M intraclass
sample kappa would di�er. This fact di�erentiates the distribution theory of the intraclass
kappa for binary data from that of the intraclass correlation coe�cient, �, to which it is
closely computationally related, for interchangeable normal variates, for in the latter case, the
distribution is determined by �, however large the number of raters, M .
For example, in Table II, we present an example of a ‘sensitivity=speci�city’ model and of a

‘know=guess’ model selected to have almost exactly the same P=0:10 and �=0:50, and show
the distribution of response for M=2; 4; 6. It can be seen that the population distributions are
almost the same for M=2, slightly di�erent for M=4 and very di�erent for M=6. Thus,
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unless M=2, one would not expect that the distributions of the 2×M intraclass kappa would
be the same in these two cases, much less in all cases with P=0:10 and k=0:50.
The vector of observed frequencies of the numbers of positive responses has a multinomial

distribution with probabilities determined by the expected values of Bin(s:pi;M). Thus one
can use the methods derived by Fisher [50] to obtain an approximate (asymptotic) standard
error of kappa. An approximate standard error of k can also be obtained very easily using
jack-knife procedures omitting one patient at time [45; 47; 51–53], as shown in Table I.
These results correspond closely to those derived in various ways for the 2× 2 intraclass
kappas [43; 46; 47; 54]. The jack-knife procedure is demonstrated in Table I. (As a ‘rule
of thumb’, the minimum number of patients should exceed both 10=P and 10=P′. When
P=0:5; 20 patients are minimal; when P=0:01, no fewer than 1000 patients are needed.)
A generalized version of the SAS program (SAS Institute Inc., Cary NC) that performs the
calculations can be located at http:==mirecc.stanford.edu
When there are a variable number of raters per patient, the problem becomes more com-

plicated, since the exact distribution of responses changes as M varies, involving more or
fewer unknown moments of the pi1 distribution. If the patient’s number of ratings is totally
independent of his=her pi1, one could stratify the patients by the number of ratings, obtain
a 2× 2 intraclass kappa from those with M=2, a 2× 3 intraclass kappa from those with
M=3 etc., and a standard error for each. Since these are independent samples from the same
parent population, one could then obtain a weighted average of the kappas and its standard
error using standard methods.
However, often the variation of the number of ratings is related to pi1. Patients with more

serious illnesses, for example, are more likely to have a positive diagnosis and less likely to
provide the greater number of ratings. In that case, the subsamples of patients with 2; 3; 4; : : :
ratings may represent di�erent populations and thus have di�erent reliabilities that should not
be muddled. This raises some serious questions about the practical application of the standard
error derived by Landis and Koch [48] or any solution in which the number of ratings is
variable.
To summarize, for the purpose of measuring reliability of a binary measure, the 2×M

(M¿2) is highly recommended, but the use of the K×M kappa for K¿2 is questionable.
To this it should be added that useful standards have been suggested for evaluation of the
2×M kappa as a measure of reliability [24], with k60:2 considered slight, 0:2¡k60:4 as
fair; 0:4¡k60:6 as moderate, 0:6¡k60:8 as substantial and k¿0:8 as almost perfect. It
is important to realize that a kappa coe�cient below 0.2 is slight, no matter what the p-
value is of a test of the null hypothesis of randomness. Moreover, a kappa coe�cient above
0.6 that is not ‘statistically signi�cant’ on such a test indicates inadequate sample size, not
a de�nitive conclusion about the reliability of the measure. It is the magnitude of k that
matters, and how precisely that is estimated, not the p-value of a test of the null hypothesis
of randomness [55].

3. VALIDITY OF CATEGORICAL MEASURES: THE K×M WEIGHTED KAPPAS

The validity of a measure is de�ned as the proportion of the observed variance that re�ects
variance in the construct the measure was intended to measure [36; 38], and is thus always
no greater than the reliability of a measure. Validity is generally assessed by a correlation
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coe�cient between a criterion or ‘gold standard’ (Xi) and the measure (Yi) for each patient
in a representative sample from the population to which the results are to be generalized.
(Once again, a measure might be more valid in one population than in another.) If a measure
is completely valid against a criterion, there should be a 1:1 mapping of the values of Yi
onto the values of Xi. With categorical measures, the hope is to be able to base clinical or
research decisions on Yi that would be the same as if those decisions were based on the
‘gold standard’ Xi. That would require not only that the number of categories of Yi match the
number of categories of Xi, but that the labels be the same.
The ‘gold standard’ is the major source of di�culty in assessing validity, for there are very

few true ‘gold standards’ available. Instead, many ‘more-or-less gold standards’ are considered,
each somewhat �awed, but each of which provides some degree of challenge to the validity of
the measure. Thus, as in the case of reliability, there are many types of validity, depending on
how the ‘gold standard’ is selected: face validity; convergent validity; discriminative validity;
predictive validity; construct validity.
While there are many problems in medical research that follow this paradigm, few of which

are actually labelled ‘validity’ studies, we will for the moment focus on medical test evalua-
tion. In medical test evaluation, one has a ‘gold standard’ evaluation of the presence=absence
or type of disease, usually the best possible determination currently in existence, against which
a test is assessed. To be of clinical and policy importance the test result for each patient should
correspond closely to the results of the ‘gold standard’, for treatment decisions for patients
are to be based on that result.

3.1. A 2× 2 weighted kappa coe�cient
Once again the most common situation is with two ratings per patient, say Xi and Yi each
having only two categories of response. We use di�erent designations here for the two ratings,
Xi and Yi, in order to emphasize that the decision process underlying the ‘gold standard’ (Xi)
and the diagnosis under evaluation (Yi) are, by de�nition, not the same. For the same reason,
we focus on the probability of a positive result (category 1) in each case, with probability
pi1 for Xi and qi1 for Yi, using di�erent notation for the probabilities.
The distribution of pi1 and qi1 in the population of patients may be totally di�erent, even

if P=E(pi1) and Q=E(qi1) are equal. The equality of P and Q cannot be used to justify the
use of the intraclass kappa in this situation, for the intraclass kappa is appropriate only to the
situation in which all the moments, not just the �rst, are equal (interchangeable variables).
Since Xi and Yi are ‘blinded’ to each other, the probability that for patient i both Xi and Yi

are positive is pi1qi1. Thus in the population, the probability that a randomly selected patient
has both Xi and Yi positive is E(pi1qi1)=PQ + ��p�q, where P=E(pi1); Q=E(qi1); � is
the product moment correlation coe�cient between pi1 and qi1; �2p =variance(pi1); �

2
q =

variance(qi1). All the probabilities similarly computed are presented in Table III.
It can be seen in Table III that the association between Xi and Yi becomes stronger as ��p�q

increases from zero. At zero, the results in the table are consistent with random decision
making. Any function of ��p�q; P and Q, that is strictly monotonic in ��p�q, that takes on
the value zero when �=0, and takes on the value +1 when the probabilities on the cross
diagonal are both 0, and −1 when the probabilities on the main diagonal are both 0, is
a type of correlation coe�cient between X and Y . The di�culty is that there are an in�nite
number of such functions (some of the most common de�ned in Table III), and therefore an
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Table III. The 2×2 weighted kappa: probabilities and weights. De�nitions of some common
measures used in medical test evaluation or in risk assessment.

Y=1 Y=2 Total

Probabilities
X=1 a=PQ + ��p�q b=PQ′ − ��p�q P
X=2 c=P′Q − ��p�q d=P′Q′ + ��p�q P′=1− P
Total Q Q′=1− Q

Weights indicating loss or regret (0¡r¡1):
X=1 0 r
X=2 r′=1− r 0

�(r)= (ad− bc)=(PQ′r + P′Qr′)= ��p�q=(PQ′r + P′Qr′); (0¡r¡1).
�(1=2)=2(ad− bc)=(PQ′ + P′Q)= (p0 − pc)=(1− pc); (p0 = a+ d; pc =PQ + P′Q′).

Sensitivity of Y to X : Se= a=P=Q + Q′�(1).
Speci�city of Y to X : Sp=d=P′=Q′ + Q�(0).
Predictive value of a positive test: PVP= a=Q=P + P′�(0).
Predictive value of a negative test: PVN=d=Q′=P′ + P�(1).
Percent agreement =p0 = a+ d=pc + p′

c�(1=2).
Risk di�erence=Se + Sp− 1= a=P − c=P′= �(Q′).
Attributable risk = �(0).
Odds ratio= ad=bc=(SeSp)/(Se′Sp′)= (PVP PVN)=(PVP′ PVN′).

in�nite number of correlation coe�cients that yield results not necessarily concordant with
each other.
There is one such correlation coe�cient, a certain 2× 2 weighted kappa, unique because

it is based on an acknowledgement that the clinical consequences of a false negative (Xi
positive, Yi negative) may be quite di�erent from the clinical consequences of a false positive
(Xi negative, Yi positive) [47]. For example, a false negative medical test might delay or
prevent a patient from obtaining needed treatment in timely fashion. If the test were to fail
to detect the common cold, that might not matter a great deal, but if the test were to fail
to detect a rapidly progressing cancer, that might be fatal. Similarly a false positive medical
test may result in unnecessary treatment for the patient. If the treatment involved taking two
aspirin and calling in the morning, that might not matter a great deal, but if it involved
radiation, chemotherapy or surgical treatment, that might cause severe stress, pain, costs and
possible iatragenic damage, even death, to the patient. The balance between the two types of
errors shifts depending on the population, the disorder and the medical sequelae of a positive
and negative test. This weighted kappa coe�cient is unique among the many 2× 2 correlation
coe�cients in that in each context of its use, it requires that this balance be explicitly assessed
a priori and incorporated into the parameter.
For this particular weighted kappa, a weight indicating the clinical cost of each error is

attributed to each outcome (see Table III); an index r is set that ranges from 0 to 1 indicating
the relative importance of false negatives to false positives. When r=1, one is primarily con-
cerned with false negatives (as with a screening test); when r=0, one is primarily concerned
with false positives (as with a de�nitive test); when r=1=2, one is equally concerned with
both (as with a discrimination test). The de�nition of �(r) in this case [47; 56] is

�(r)=��p�q=(PQ′r + P′Qr′)
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The sample estimator is k(r)= (ad−bc)=(PQ′r+P′Qr′), where a; b; c; d are the proportions of
the sample in the cells so marked in Table III, P and Q estimated by the sample proportions.
Cohen’s kappa [40], often called the ‘unweighted’ kappa, is �(1=2)

�(1=2)= (p0 − pc)=(1− pc)
where p0 again is the proportion of agreement, and here pc=PQ + P′Q′, once again
a PACC (see Table III for a summary of de�nitions). When papers or programs refer to
‘the’ kappa coe�cient, they are almost inevitably referring to �(1/2), but it must be recog-
nized that �(1=2) re�ects a decision (conscious or unconscious) that false negatives and false
positives are equally clinically undesirable, and �(r) equals PACC only when r=1=2.
Di�erent researchers are familiar with di�erent measures of 2× 2 association, and not all

readers will be familiar with all the following. However, it is important to note the strong
interrelationships among the many measures of 2× 2 association. Risk di�erence (Youden’s
index) is �(Q′), and attributable risk is �(0), re�ecting quite di�erent decisions about the
relative importance of false positives and negatives. The phi coe�cient is the geometric mean
of �(0) and �(1): (�(0)�(1))1=2. Sensitivity and predictive value of a negative test rescaled
to equal 0 for random decision making and 1 when there are no errors, equal �(1). The
speci�city and predictive values of a positive test, similarly rescaled, equal �(0). For any r
between 0 and 1; �(r)=max �(r) and phi=max phi [57], where max �(r) and max phi are the
maximal achievable values of �(r) and phi, respectively, equal either �(0) or �(1), depending
on whether P is greater or less than Q. This brie�y demonstrates that most of the common
measures of 2× 2 association either (i) equal �(r) for some value of r, or, (ii) when rescaled,
equal �(r) for some value of r, or (iii) equal some combination of the �(r). Odds ratio and
measures of association closely related to odds ratio seem the notable exceptions.
Researchers sometimes see the necessity of deciding a priori on the relative clinical impor-

tance of false negatives versus false positives as a problem with �(r), since other measures
of 2× 2 association do not seem to require any such a priori declaration. In fact, the opposite
is true. It has been demonstrated [58] that every measure of 2× 2 association has implicit in
its de�nition some weighting of the relative importance of false positives and false negatives,
often unknown to the user. The unique value of this weighted kappa as a measure of validity
is that it explicitly incorporates the relative importance of false positives and false negatives,
whereas users of other 2× 2 measures of association make that same choice by choosing
one measure rather than another, and often do so unaware as to the choice they have de
facto made. If they are unaware of the choice, that is indeed a problem, for there is risk of
misleading clinical and policy decisions in the context in which the user applies it [58].
However, unlike the situation with reliability, it cannot be argued that �(r), in any sense,

de�nes validity, for the appropriate choice of a validity measure depends on what the user
stipulates as the relative importance of false positives and false negatives. How these are
weighted may indicate a choice of index not directly related to any �(r) (the odds ratio, for
example).
It is of importance to note how the relative clinical importance (r) and the reliabilities

of X and Y (the intraclass �X and �Y de�ned above for X and Y ) in�uence the magnitude
of �(r):

�(r)=�(�X�Y )1=2(PP′QQ′)1=2=(PQ′r + P′Qr′)

with P′=1− P; Q′=1−Q; r′=1− r.
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Here, as de�ned above, � is the correlation between pi1 and qi1 (which does not change
with r). �X and �Y are the test–retest reliabilities of X and Y (which do not depend on r). As
is always expected of a properly de�ned reliability coe�cient, the correlation between X and Y
re�ected in �(r) su�ers attenuation due to the unreliabilities of X and Y , here measured by the
intraclass kappas �X and �Y . Only the relationship between P and Q a�ects �(r) di�erently
for di�erent values of r. When P=Q; �(r) is the same for all values of r and estimates
the same population parameter as does the intraclass kappa although the distribution of the
sample intraclass kappa is not exactly the same as that of the sample weighted kappa. For that
matter, when P=Q, the sample distributions of k(r) for di�erent values of r are not all the
same, even though all estimate the same parameter. Otherwise, in e�ect, too many positive
tests (Q¿P) are penalized by �(r) when false positives are of more concern (r nearer 0),
and too many negative tests (Q¡P) are penalized by �(r) when false negatives are of more
concern (r nearer 1).
A major source of confusion in the statistical literature related to kappa is the assignment

of weights [13]. Here we have chosen to use weights that indicate loss or regret, with zero
loss for agreements. Fleiss [43] used weights that indicate gain or bene�t, with maximal
weights of 1 for agreements. Here we propose that false positives and false negatives may
have di�erent weights. Fleiss required that they be the same. Both approaches are viable for
di�erent medical research problems, as indeed are many other sets of weights, including sets
that assign di�erent weights to the two types of agreements.
If the weights re�ect losses or regrets, �(r)= (Ec(r) − Eo(r))=(Ec(r) − min), while if the

weights re�ect gains or bene�ts, �(r)= (Eo(r) − Ec(r))=(max−Ec(r)), where Ec(r) is the
expected weight when �=0 and Eo(r) the expected weight with the observed probabilities.
The scaling factor min is the ideal minimal value of Eo(r) when losses are considered, and
max is the ideal maximal value of Eo(r) when gains are considered, for the particular research
question. Here min is 0, where there are no disagreements; Fleiss’ max is 1, also when there
are no disagreements. Regardless of the weight assigned to disagreements in Fleiss’ version
of kappa, his weighted kappas in the 2× 2 situation all correspond to what is here de�ned as
�(1=2), while if P and Q are unequal, here �(r) changes with r, and generally equals �(1=2)
only when r=1=2.
How the weights, min and max, are assigned changes the sampling distribution of �(r),

which may be one of the reasons �nding its correct standard error has been so problematic.
Since the weights should be dictated by the nature of the medical research question, they
should and will change from one situation to another. It is not possible to present a formula
for the standard error that would be correct for all possible future formulations of the weights.
For the particular weights used here (Table III) the Fisher procedure [50] could be used to
obtain an asymptotic standard error. However, given the di�culties engendered by the wide
choice of weights, and the fact that it is both easier and apparently about as accurate [54] when
sample size is adequate, we would here recommend instead that the jack-knife estimator be
used. That would guarantee that the estimate of the standard error be accurate for the speci�c
set of weights selected and avoid further errors.

3.2. The K × 2 multi-category kappa
In the validity context, as noted above, if the ‘gold standard’ has K categories, any candi-
date valid measure must also have K categories with the same labels. Thus, for example,
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Table IV. Example: the joint probability distribution of a three-category X and a three-category Y ,
with one perfectly valid category (Y=1 for X=1), and two invalid categories (Y=2 for X=2)

and (Y=3 for X=3) because of an interchange of Y=2 and Y=3 (P1 + P2 + P3 = 1).

Y=1 Y=2 Y=3 Total

X=1 P1 0 0 P1
X=2 0 0 P2 P2
X=3 0 P3 0 P3
Total P1 P3 P2

if the ‘gold standard’ identi�es patients with schizophrenia, depression, personality disorder,
and ‘other’, any potentially valid diagnostic test would also identify the same four categories.
In a direct generalization of the above, if ‘gold standard’ and diagnosis agree, disagreement
is zero. If, however, someone who is schizophrenic is treated for depression, that is not an
error necessarily of equal clinical importance as someone who is depressed being treated for
schizophrenia. For each possible disgreement, one could assess the relative clinical impor-
tance of that misclassi�cation, denoted rjj∗ for j �= j∗. The only requirement is that rjj∗¿0
for all j �= j∗, and that �rjj∗=1. Then the weighted kappa, �(r), is de�ned as above as
(Ec(r)− Eo(r))=Ec(r).
The di�culty here, as with the K × 2 intraclass kappa, is that �(r) is sure to equal 0 only

if all classi�cations are random. Thus having only one valid category can yield a positive
�(r), or we might have �(r) near zero when all but one category are completely valid.
For example, consider the case shown in Table IV. Here diagnostic category 1 is com-

pletely valid for ‘gold standard’ category 1, but diagnostic categories 2 and 3 are obviously
switched. When (all rjj∗ here equal) P1 = 0:1; P2 = 0:4 and P3 = 0:5; k(r)=−0:525. When
P1 = 0:3; P2 = 0:5; P3 = 0:2; k(r)=+0:014. When P1 = 0:8; P2 =P3 = 0:1; k(r)=+0:412. None
of these results (−0:525;+0:014;+0:412) suggests what is obvious from examination of the
complete cross-classi�cation matrix: Y -categories 2 and 3 must be switched to obtain perfect
validity. Consequently, once again, we propose that, like the multi-category intraclass kappa,
the multi-category weighted kappas not be used as a measure of validity, for no single mea-
sure of validity can convey completely and accurately the validity of a multi-category system,
where some categories may be valid but vary in terms of degree of validity, and others may
be invalid.

3.3. The 2×M Multi-rater kappa

Now suppose that we had a binary ‘gold standard’ Xi, and M binary diagnostic tests:
Yi1; Yi2; : : : ; YiM . Can the M diagnostic tests be used to obtain a valid diagnosis of Xi, and
how valid would that test be? In this case, Xi and each Yij may have a di�erent underly-
ing distribution of pi1 or qi1. While we could propose a multi-rater kappa [59], generally
the way this problem is approached in medical test evaluation is by developing a function
g(Yi1; Yi2; : : :), called a ‘risk score’, such that g() is monotonically related to Prob(Xi=1).
Then some cutpoint is selected so that if g(Yi1; Yi2; : : :)¿C, the diagnostic test is positive, and
otherwise negative.
Almost inevitably, applying such a cutpoint dichotomizing the ordinal risk score to a binary

classi�cation reduces the power of statistical tests based on the measures [60]. If the cutpoint is
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injudiciously chosen, it may also mislead research conclusions. However, for clinical decision
making, that is, deciding who to treat and not treat for a condition, who to hospitalize or not,
a binary measure is necessary. Thus while the recommendation not to dichotomize for purposes
of research is almost universal, dichotomization for clinical purposes is often necessary. Such
dichotomization reduces the multivariate tests to a binary test based on all the individual tests.
The 2× 2 weighted kappa may then be used as a measure of the validity of the combined
test.
The most common method of developing this function is multiple logistic regression analysis

where it is assumed that logit Prob(Xi=1|Yi1; Yi2; : : :)=�0+��jYij , that is, some linear function
of the Y ’s, with a ‘risk score’ (��jYij) assigned to each patient. Regression trees [56; 61] can
also be used, using whatever validity criterion the developer chooses to determine the optimal
test at each stage and a variety of stopping rules. Each patient in a �nal branch is given
a ‘risk score’ equal to the Prob(Xi=1) in that subgroup. Finally, one might simply count the
number of positive tests for each patient, g(Y )=�Yij , and use this as a ‘risk score’. There
are many such approaches, all of which reduce the 2M possible di�erent responses to the M
binary tests to a single ordinal response, the ‘risk score’, using all M tests in some sense
optimally. The relative strengths and weaknesses of these and other approaches to developing
the ‘risk score’ can be vigorously debated. However, that is not the issue here.
When the ‘risk score’ is determined, the cutpoint C is often selected to equate P and

Q, that is, so that Q=Prob(g(Yi1; Yi2; : : :)¿C)=P. This is not always ideal. Better yet, the
optimal cutpoint would be the one that maximizes �(r), where r again indicates the relative
importance of false negatives to false positives [56], or whichever other measure of 2× 2
association best re�ects the trade-o�s between false positives and false negatives.
We do not recommend any 2×M weighted kappa coe�cient as a measure of validity,

for there are already a variety of other standard methods used in this problem that seem
to deal well with the problem. None seems to require or would bene�t from a 2×M kappa
coe�cient, for all focus more appropriately on reducing the problem to a 2× 2 problem. Then
the 2× 2 weighted kappa might be used as a measure of validity.

4. THE PROBLEM OF CONSENSUS DIAGNOSIS

The �nal context of medical research in which kappa coe�cients have proved uniquely useful
is that of the consensus diagnosis. Suppose one assesses the reliability of a binary Xi, and
found that its reliability, as measured by a 2×M intraclass kappa, was greater than zero, but
not satisfactory. ‘Rule of thumb’ standards for reliability have been proposed [14; 24]. By
those standards, �=0:579, as in the Periyakoil data, or �=0:5, as in both cases of Table II,
would be considered ‘moderate’ [24] or ‘fair’ [14]. Could one use a consensus of M raters,
requiring at least C positive diagnoses for a consensus positive diagnosis, and thereby achieve
adequate (say �¿0:8, ‘almost perfect’ or ‘substantial’) reliability? How large should M be,
and what value of C should be chosen?
One could deal with the problem using brute force: sample 2M raters for each patient sam-

pled, randomly split the raters into two groups of M for each patient. Then for C=1; 2; : : : ; M ,
determine the diagnosis for that value of C, and obtain 2× 2 intraclass kappa, �CM . Then
choose the optimal cutpoint C as the one that maximizes �CM for that value of M . Then
vary M .
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Table V. The optimal consensus diagnoses for the sensitivity/speci�city model with Se= 0:60.
Sp′=0:01, �=0:1525, and for the know=guess model with �1 = 0:0250, �0 = 0:7875, �=0:4054.
Both models have P=0:10, �=0:50. The number of diagnoses in the consensus is M , with C
the optimal cutpoint (a positive diagnosis is given those with C or more positive diagnoses
of the M). Q is the proportion diagnosed positive with the optimal consensus, and � is the

intraclass � for that consensus.

M Sensitivity/speci�city model Know/guess model

C Q � C Q �

1 1 0.10 0.50 1 0.10 0.50
2 1 0.14 0.70 1 0.15 0.66
3 1 0.17 0.76 1 0.17 0.78
4 2 0.13 0.79 1 0.19 0.87
5 2 0.14 0.89 1 0.20 0.92
6 2 0.15 0.94 1 0.20 0.95
7 2 0.15 0.96 1 0.21 0.97
8 2 0.15 0.97 1 0.21 0.98
9 2 0.15 0.97 1 0.21 0.99
10 3 0.15 0.98 1 0.21 0.99

With the four raters in Table I, we have already calculated that �11 = 0:579. We then
randomly split the pool of four raters into two sets of two for each patient, and found that
�12 = 0:549, and �22 = 0:739. Thus the optimal consensus of 2 is to use a cutpoint C=2,
and the reliability then rises from �11 = 0:579 with one rater to �22 = 0:739 for an optimal
consensus of two. For an expanded discussion of these methods, see Noda et al. [62], and
for a program to perform such calculations see http:==mirecc.stanford.edu
It is of note that if the optimal consensus of 2 is obtained when C=1, in practice one

would not request a second opinion when the �rst one was positive. If, as above, the optimal
consensus of 2 is obtained when C=2, in practice one would not request a second opinion
when the �rst one was negative. It often happens with the optimal consensus that, when put
into practice, the number of ratings per patient to obtain a consensus of M is far less than
M ratings per patient. This often means one can increase the quality of the diagnosis with
minimal increase in time and cost. However, to identify that optimal consensus in the �rst
place requires 2M ratings for each patient. Thus to evaluate a consensus of 3, one needs 6
ratings per patient, for 4, one needs 8, etc. This rapidly becomes an unfeasible solution in
practice.
The theoretical solution is easy. For a patient with probability pi1 on a single rating, the

probability of a positive diagnosis for a consensus of C of M is

qiCM =Bin(C;pi1; M)

where Bin(C;pi1; M) is the probability that a binomial random variable with parameters pi
and M equals or exceeds C. Thus QCM =E(Bin(C;pi1; M)) and �CM =var(qiCM )=(QCMQ′

CM ).
If we knew the distribution of pi1, we would also know the distribution of qiCM for all C
and M , and thus know �CM . In Table V, for example, are presented the two hypothetical
cases of Table II, where we do know the distribution and they have almost identical P and �.
Here for the sensitivity=speci�city model, as M increases from 1 to 10, the optimal C rises
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from 1 to 2 to 3, and the � from 0:50 for one observation to 0:98 for a consensus of 10. One
would need a consensus of 2 positive out of 5 to achieve �¿0:8. On the other hand, for the
‘know=guess’ model, as M increases from 1 to 10, the optimal C is always equal to 1, but
the � still rises from 0:50 for one observation to 0:99 for a consensus of 10. One would now
need a consensus of 1 positive out of 4 to achieve �¿0:8.
The above illustration demonstrates the fallacy of certain intuitive notions:

(i) It is not necessarily true that the optimal consensus equates Q with P.
(ii) The ‘majority rule’ (always use the �rst C exceeding M=2), is not always best.
(iii) The ‘unanimity rule’ (always use C=0 or C=M), too, is not always best.
(iv) Knowing P and � does not settle the issue, for quite di�erent optimal consensus rules

were derived for the two situations in Table II having almost the same P and �.

Since the reason for dichotomization is most compelling for purposes of clinical decision
making, these false intuitive notions can mislead such decisions.
Examination of cases such as these provides some insight into the solution. For the

‘sensitivity=speci�city’ model, it can be seen that for every M , the optimal C cuts o� as
close to the top 15 per cent of the number of positives as is possible. That 15 per cent
corresponds to the ‘high risk’ subgroup with pi1=Se=0:60. For the ‘know=guess’ model, the
optimal C cuts o� as close to the top 21 per cent of the number of positives as is possi-
ble. That 21 per cent corresponds to the ‘high risk’ comprising the subgroup of 2.5 per cent
with pi1= 1 plus the subgroup of 18.8 per cent with pi1= 0:4054. However, in general, what
proportion Q∗ constitutes the ‘high risk’ subgroup?
The numerator of � is var(pi1) which, for any P∗ between 0 and 1, can be partitioned into

two components:

var(pi1)=2Q∗Q∗′(�1 − �2)2 +Q∗var(pi1|pi1¿P∗) +Q∗′var(pi1|pi1¡P∗)

where Q∗=prob(pi1¿P∗); Q∗′=1−Q∗; �1 =E(pi1|pi1¿P∗), and �2 =E(pi1|pi1¡P∗). The
percentage cut o� by optimal C approximates Q∗, for that value of P∗ for which the �rst
term of var(pi1) is maximized. Thus the optimal cutpoint for pi1 (P∗), which determines the
percentage of ‘high risk’ subjects (Q∗), is determined by what dichotomization of the pi1
distribution absorbs as much of the variance as possible [63].

5. CONCLUSIONS

To summarize:

(i) The 2×M intraclass kappa (M¿2) for a well-designed reliability study directly es-
timates reliability as de�ned in the classical sense and is thus the ideal reliability
coe�cient for a binary measure. For reasonable sample size, its standard error can
be easily computed, and used to formulate con�dence intervals, to test homogeneity
of �’s and to address other such statistical challenges, such as developing optimal
consensus rules.

(ii) The 2× 2 weighted kappa �(r) described here is an excellent choice as a validity
measure, although not a unique choice. However, since it explicitly requires that the
relative importance of false positives and false negatives be speci�ed and incorporated
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into the validity measure, while all other 2× 2 measures require that choice implicitly,
�(r) is highly recommended in this context. For reasonable sample size, its standard
error can easily be computed using jack-knife methods.

(iii) The K ×M intraclass kappa, for K¿2, is not recommended as a measure of reliability,
for no single measure is su�cient to completely and accurately convey information
on reliability when there are more than two categories.

(iv) The K ×M weighted kappas for K¿2 or M¿2 are not recommended as validity
measures. When K¿2, the situation is similar to that with the K ×M intraclass kappa.
Any single measure, including �(r), is not enough to provide the necessary information
on validity when some categories may be valid and others not. When M¿2, all the
preferred methods in one way or another dichotomize the multi-dimensional Y space
to create a binary outcome, and may then choose to use the 2× 2 weighted kappa as
a measure of validity. A K ×M weighted kappa is not needed.

Even limited to these two contexts of reliability and validity, a broad spectrum of impor-
tant medical research problems are encompassed. The 2×M intraclass kappa applies to any
situation in which units are sampled from some population, and multiple subunits are sampled
from each unit, where the intra-unit concordance or the inter-unit heterogeneity is of research
interest.
For example, the intraclass kappa is useful as a measure of twin concordance in genetic

studies of twins [64] (and could be used for triplets or quadruplets), as a measure of inter-
sibling concordance in family studies, of intra-group concordance among patients in a therapy
group etc. A research question such as the following also falls into the same category: If
one sampled physicians or hospitals who performed a certain procedure, and assessed the
outcome (success=failure) on a random sample of M of each physician’s or hospital’s patients
undergoing that procedure, how heterogeneous would the physicians or hospitals prove to be?
Here �=0 would indicate absolute homogeneity of results; larger � would indicate greater
heterogeneity (perhaps related to the type of patients referred, training, skill, resources or
experience). Moreover, if there were a hypothesized source of heterogeneity (perhaps those
that specialize in that procedure versus those that only occasionally do it), one could stratify
the population by that source, compute the 2×M intraclass kappa within each stratum. If
indeed that source accounted for most of the heterogeneity, the 2×M intraclass kappa within
each stratum would approach zero.
The 2× 2 weighted kappa in general could be applied to any situation in which the corre-

lation between binary Xi and binary Yi is of interest, where there are clinical consequences to
be associated with the decisions. The particular weighted kappa discussed here is particularly
relevant when Yi is to be used to make decisions relative to Xi, in which case it is prudent
to consider the relative clinical importance of false positives and false negatives. There are
a vast number of research questions of this type in medical research. We have used as an
example the evaluation of a medical test against a binary ‘gold standard’. Since such medical
tests are often the basis of medical decisions of whom to treat and how, such problems are
of crucial importance. However, Xi might also represent the presence or absence of a disor-
der, and Yi a possible risk factor for that disorder. Such information often in�uences policy
recommendations as to preventive measures or targeting of certain populations for preventive
interventions. In that situation, �(r) would be used as a measure of potency of that risk
factor [58]. Xi might be the diagnosis by an acknowledged expert, and Yi the diagnosis by
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a less expert clinician, a nurse, a layman, from a di�erent source, or under di�erent con-
ditions. Such questions often arise in health services research, for if one can achieve the
same (or better) quality of diagnosis from less costly sources, one could decrease medical
costs with no decrease in quality of care. What characterizes all these situations is that Xi is
a criterion against which Yi is to be evaluated, and that there are costs to misclassi�cation
that are embodied in the weight, r, that de�nes �(r).
There are many other medical research questions for which some form of kappa could

conceivably be used, but to date, the logic of suggesting any form of kappa is either absent or
weak. For example, to show that two disorders are non-randomly comorbid in a population,
one would assess how frequently they co-occur in that population and show this is more
frequent than random association would suggest [65]. One could certainly use a kappa to
measure such comorbidity, but which kappa, and why any kappa would be preferable to the
odds ratio, for example, is not clear. If one were interested in whether one could use a single
nominal observation plus other information to predict a second nominal observation, one might
prefer various regression modelling approaches, such as log-linear models [5; 20; 66]. So far,
there appear to be few other contexts not covered above, where use of a kappa coe�cient
might be unequivocally recommended or preferred to other methods. Thus it appears that there
are certain situations where kappa coe�cients are ideally suited to address research questions
(2×M intraclass kappa for reliability), certain situations in which kappa coe�cients have
qualities that make them outstanding choices (2× 2 weighted kappa in the validity context),
and many other situations in which kappa coe�cients may mislead or where other approaches
might be preferable.
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