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Abstract-The weighted kappa statistic has been used as an agreement index for ordinal 
data. Using data on the comparability of primary and proxy respondent reports of 
alcohol drinking frequency we show that the value of weighted kappa can be sensitive 
to the choice of weights. The distinction between association and agreement is clarified 
and it is shown that in some respects weighted kappa behaves more like a measure of 
association than an index of agreement. In particular, it is demonstrated that the 
weighted kappa statistic is not always sensitive to differences in the observed proportion 
in exact agreement and that high values of weighted kappa can be observed even when 
the level of agreement is low. We illustrate the use of statistical models in the analysis 
of epidemiologic agreement data and conclude that modelling ordinal agreement data 
produces insights which cannot he obtained through the use of weighted kappa statistics. 

Kappa Agreement Epidemiologic methods 

INTRODUCI’ION 

Studies of the reliability of epidemiologic survey 
instruments and of observer reliability usually 
involve analysis of agreement amongst paired 
measurements. In clinical research the question 
of diagnostic agreement has also received con- 
siderable attention [l]. In both these situations 
the study of agreement is the main issue and we 
follow Becker in describing such studies as 
agreement studies [2]. 

The natural representation of categorical 
agreement data is a two-way table such as 
Table 1, which is a cross-classification of pri- 
mary respondent and proxy reports of alcohol 
drinking frequency. The data reported in 
Table 1 were drawn from the control series of 
the Auckland Heart Study, a community based 
case-control study of coronary heart disease. In 
this study, a randomly selected sub-sample of 
the non-fatal myocardial infarction controls 
(primary respondents) were asked if their next 
of kin (proxy respondents) could also be inter- 

viewed about them (the myocardial infarction 
controls) [3]. 

In this paper we focus on methods for 
analysing agreement on the classification of 
individuals rather than the issue of agreement 
between the marginal distributions. A natural 
measure of the degree of individual level 
agreement is the probability that any random 
selection from a set of paired measurements 
yields a pair who are in exact agreement. In the 
analysis of categorical agreement data it has 
become customary to use the kappa statistic [4] 
which discounts the observed proportion of all 
pairs in exact agreement by the proportion 
expected by chance. The proportion of pairs in 
agreement expected by chance is the proportion 
expected if the two measurements or reports are, 
in fact, made independently of one another. The 
kappa statistic is often referred to as a measure 
of chance corrected agreement or agreement 
beyond chance. 

When the data to be analysed are measured 
on an ordered categorical scale, the weighted 
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kappa statistic has been advocated as one of the 
preferred methods for the analysis of agreement 
data [5]. The weighted kappa statistic incorpor- 
ates the concept of “partial credit” for near 
agreements with the amount of credit dependent 
on the magnitude of the discrepancy and the 
weighting system employed. 

Recent examples of the use of weighted kappa 
include the analysis of the reproducibility and 
primary respondent-proxy respondent re- 
liability of dietary questionnaires [6,7], the re- 
producibility of components of a measure of 
illness severity [8] and agreement between clini- 
cians in the assessment of asthma severity in 
children and between methods of asthma sever- 
ity assessment [9]. However, we demonstrate 
below that there are serious problems with the 
use of weighted kappa as an agreement index. 

pendent a number of pairs would be located on 
the leading diagonal. The unweighted kappa 
statistic gives zero weight to all disagreement 
cells. Weighted kappa generalizes unweighted 
kappa by employing differential cell weights 
which reflect differences in the magnitude of 
disagreement. More formally, let nv denote the 
number of observations (pairs) in the izh row 
and jrh column of a two-way table, ni+ the ith 
row marginal total, n+j thejth column marginal 
total, n, + the total sample size, and wii the 
weight associated with the ijth cell. The 
weighted kappa statistic is defined as follows: 

where 

&v = (P, -P,)/(l -z-L/) 

Statistical modelling has been suggested as an 
alternative to the use of indices in the analysis 
of ordinal agreement data [2, lo]. We illustrate 
the use of modelling in the context of epidemi- 
ologic agreement data and show that this ap- 
proach provides insights not easily obtained 
through the use of the weighted kappa statistic. 

pow= l/n++ ~~w,noT 

the observed weighted proportion of pairs in 
agreement and 

Pew = (l/n+ + 1’1 C (WV ni+n+jb 
i j 

The problems with weighted kappa and the 
application of modelling to agreement data are 
illustrated using the data shown in Table 1, 
concerning the comparability of primary and 
proxy respondent reports of alcohol drinking 
frequency. An analysis of this dataset, based on 
the weighted kappa statistic and estimates of 
category distinguishability [l 11, has been re- 
ported elsewhere [ 121. 

the weighted proportion of pairs in agreement 
expected under a model of statistical indepen- 
dence. 

There are many possible weighting systems 
but two systems mentioned by Fleiss [4] are: the 
squared error weights 

wii = 1 - (i -j)‘/(r - 1)2, 

where r is the number of categories and i and j 
are category ranks (1 6 i, j 6 r); and the absol- 
ute error weights: 

WEIGHTED KAPPA: WHICH WEIGHTING SYSTEM 
SHOULD BE USED? wii = 1 - (i - jl/(r - 1). 

The unweighted kappa statistic measures Under both weighting schemes the cells on the 
agreement beyond chance. Chance agreement leading diagonal have weight equal to one and 
refers to the fact that even if the row and column cells representing extreme disagreement are 
classifications in an agreement table were inde- given zero weight. However for all other cells, 

Table 1. Observed primary respondent and proxy reports of alcohol drinking frequency 
(n = 456)* 

Primary respondent reports 

Never Ex 3 l/month 2 l/week 
Proxy reports drinker drinker < l/week <l/day 3 l/day 

Never drinker 47 13 19 4 0 
Ex drinker 5 6 2 1 2 
> l/month, < l/week 15 6 76 19 4 
> l/week, <l/day 1 1 23 54 22 
2 I/day 0 0 4 33 99 

*The data consist of reports from 456 primary respondent-proxy respondent pairs drawn from 
a case-control study of coronary heart disease (the Auckland Heart Study). The primary 
respondents were coronary heart disease controls and the proxies were their next of kin. 
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Table 2. Estimates of weighted kappa under 
various weighting schemes 

Weighting scheme Kappa SE 

Unweighted 0.50 0.029 
Squared error* 0.79 0.020 
Absolute errort 0.67 0.023 

*Weight for cell (ij) given by 
wii = 1 - (i -j)‘/(r - l)-?; where r is the 
dimension of the table (5, in this example). 

TWeight for cell ij given by 
w0 = 1 - Ii -jl/(r - 1). 

squared error and absolute error weights 
differ. Weighted kappa obtains its maximum 
value, one, when there is 100% exact agreement. 
When the row and column classifications are 
independent, the weighted kappa statistic is 
equal to zero. The special case of weighted 
kappa with cells on the leading diagonal given 
the maximum weight (one) and all other cells 
given zero weight is the unweighted kappa 
statistic. 

The values of weighted kappa computed 
from Table 1 under various weighting 
schemes are shown in Table 2. Clearly, the 
values of weighted kappa vary considerably 
according to the weighting scheme employed. 
For example, the squared error version of 
weighted kappa is about 6 standard errors 
greater than the absolute error version. Thus 
the first problem to be resolved in using 
weighted kappa is to settle on a weighting 
system. In the event that investigators use 
different weighting systems, comparison of 
weighted kappa statistics from different studies 
would prove difficult. 

Maclure and Willett suggest that the 
most sensible choice of weights is the 
squared error weighting system [13]. Fleiss 
and Cohen have shown that under this weight- 
ing scheme, weighted kappa is asymptotically 
equivalent to the intraclass correlation 
computed using the category ranks (1,2,3 . . .5 
in Table 1) to score responses [14]. The intra- 
class correlation has been advocated as an 
agreement index for both continuous and ordi- 
nal data [5]. 

The squared error version of weighted 
kappa is the version most commonly used 
in practice and we focus on this version of 
the statistic in the discussion below. Damiano 
et al. provide a recent example of the use of 
the absolute error version of weighted kappa 
although no justification is given for this choice 
of weights [8]. 

WEIGHTED KAPPA CALCULATED WfTI-I SQUARED 
ERROR WEIGH’ll3 INDEX OF AGREEMENT OR 

ASSOCIAmON? 

Broadly defined, the term association, in the 
context of a two-way table, includes any depar- 
ture from independence of the row and column 
classifications. However, when dealing with or- 
dered data, interest usually centres on depar- 
tures from independence which are in a 
particular direction. For example, an investi- 
gator may be interested in the extent to which 
high scores on one variable are predictive of 
high scores on the other. Complete agreement, 
which occurs when all the data is concentrated 
on the leading diagonal, is a special case of 
association. 

In general, however, perfect association does 
not imply perfect agreement. Table 3 serves to 
illustrate this point. In this hypothetical table, 
observer 2 tends to report exactly one category 
higher than observer 1. The reports of the two 
observers are strongly associated. In fact, given 
the first observer’s reports the second observer’s 
reports are perfectly predictable. However 
agreement is very poor as the two observers are 
in agreement for only 20% of the entities 
classified. The value of the unweighted kappa 
statistic for this table is zero while the value of 
weighted kappa calculated with squared error 
weights is 0.8. 

It seems clear, from this example, that the 
weighted and unweighted versions of the kappa 
statistic cannot be measuring the same thing. 
The high degree of association in Table 3 has 
produced a high value of weighted kappa in a 
situation where the level of exact agreement is 
poor. Damiano et al. describe weighted kappa 
as “the proportion of weighted agreement cor- 
rected for agreement attributable to chance” [8]. 
Logically, the proportion of weighted agreement 
and hence the weighted kappa statistic, must be 
regarded as measures of association rather than 
measures of exact agreement. 

Table 3. Hypothetical example of strong association but 
poor agreement 

Observer 2 

Observer 1 1 2 3 4 5 

1 0 100 0 0 0 
2 0 0 100 0 0 
3 0 0 0 100 0 
4 0 

: 
0 0 100 

5 0 0 0 100 

Squared error weighted kappa: 0.8 (SE: 0.008). 
Absolute error weighted kappa: 0.5 (SE: 0.013). 
Unweighted kappa: 0 (SE: 0.017). 
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Table 4. Hypothetical data with identical marginal distributions to Table 1, smaller proportion 
in exact agreement but identical value of squared error weighted kappa (n = 456) 

Primary respondent reports 

Proxy reports 
Never Ex 

drinker drinker 
2 l/month 3 l/week 
< l/week < 1 /day 3 I/day 

Never drinker 51 12 13 1 0 
Ex drinker 5 3 I 1 0 
> l/month, <l/week 6 9 63 32 10 
2 l/week, < l/day 0 2 29 38 32 
> 1 idav 0 0 12 39 85 
Squared error weighted kappa: 0.79 (0.019). 
Absolute error weighted kappa: 0.62 (0.023). 
Unweighted kappa: 0.39 (0.030). 

Further evidence that weighted kappa should 
be regarded as a measure of association rather 
than agreement is provided by the hypothetical 
data in Table 4. Both the row and column 
marginals of Table 4 are identical to those of 
Table 1 but the proportion in exact agreement 
in Table 4 is 53.9% compared to 61.8% in 
Table 1. Despite this difference the two tables 
yield identical estimates of squared error 
weighted kappa. 

The reason for the identical values of squared 
error weighted kappa in Tables 1 and 4 follows 
directly from the definition of the statistic. For, 
any general weighting system {wV}, two tables 
~~~ri;&~Jn;tij which have identical marginal 

(i.e ni+ = mi+, n+i = m+h 

i = 1,. . . r) give rise to the same value of the 
weighted kappa statistic whenever 

Under the squared error weighting system and 
the assumption that the two tables have the 
same row and column marginals this condition 
is equivalent to 

U/n+ + ) T F (ijh, = U/m+ + 1 C C (ij)q (1) 
i j 

It is easily verified that Tables 1 and 4 satisfy 
this condition. 

Given the other conditions, condition (1) is 
equivalent to the requirement that the corre- 
lation between the row and column responses be 
identical in the two tables. Clearly, two tables 
can satisfy all the above conditions but differ in 
the proportion of pairs in exact agreement. The 
condition (1) does not guarantee that 

(l/n+ + >Cnii=(llm++)Cmii7 
I I 

i.e. identical correlation coefficients do not im- 

ply identical proportions in exact agreement. 
Thus, amongst tables with the same marginal 
distributions, squared error weighted kappa is 
dependent only on the overall correlation be- 
tween row and column classifications and is not 
directly dependent on the propensity for exact 
agreement. A corollary of this is that weighted 
kappa can appear insensitive to differences in 
the proportion in exact agreement. 

We do not claim that squared error weighted 
kappa is always insensitive to differences in the 
proportion in exact agreement but rather, that 
it can be insensitive. This is an undesirable 
characteristic for an agreement index. The 
above examples suggest that weighted kappa 
should be regarded as a measure of association 
rather than an index of agreement. 

The propensity for pairs to be in agreement 
should be the focus of agreement analyses. 
When dealing with ordered data however, the 
presence of off-diagonal association will usually 
also be of some interest. For example, when a 
high level of agreement is observed in a study of 
reproducibility, the presence of off-diagonal as- 
sociation may further strengthen claims about 
the underlying quality of a survey instrument. It 
is not clear how a single index such as weighted 
kappa can reflect both differences in exact agree- 
ment and differences in off-diagonal association. 
In the next section we briefly discuss the use of 
statistical models which focus attention on the 
leading diagonal of an agreement table while 
also allowing the strength of off-diagonal associ- 
ation to be assessed. 

MODELLING ORDINAL AGREEMENT DATA 
Agresti proposed the following quasi-associ- 

ation model for studying ordinal agreement 
data [lo]: 

log(mv) = p + 2; + 2; + &dj + SiZ(i =j), 
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where rnV is the expected cell count in the cell 
defined by the ith row andjth column, p, A; and 
nJ are mean, row and column effect parameters 
respectively, /I is the association parameter, the 
(ui} are the category scores and the (6,) are 
agreement parameters which take account of the 
special features of diagonal cells. I(i =j) is an 
indicator function which takes the value 1 when 
i =j, i.e when a cell lies on the leading diagonal, 
and 0 elsewhere. The model can be character- 
ized as “agreement plus linear by linear associ- 
ation” [lo, 151. 

Not all of the diagonal parameters, 6, need be 
unique. Equality constraints can be imposed on 
all the {SJ or on a subset of these diagonal 
parameters. Agresti emphasized the model with 
only one diagonal parameter i.e. di = 6, 
i= )... 1 r. [lo, 151. Models with two or more 
diagonal parameters may be useful if variation 
by category in the propensity for agreement is of 
interest. Strictly speaking, the term quasi associ- 
ation refers specifically to the model with all 
diagonal parameters distinct. However, for con- 
venience, our usage of the term includes models 
with equality constraints on the diagonal par- 
ameters. 

Category scores for quasi-association models 
must either be specified by the investigator 
or estimated from the data. If the scores 
are estimated, the quasi-association model is 
log non-linear and cannot be fitted using 
conventional statistical software. The integer 
scores, (1,2,3 . . . r) will often be a sensible 
choice for the category scores, however when 
the ordinal scale is derived by grouping an 
underlying continuous scale, the category mid- 
points provide a sensible alternative set of 
scores. 

The special case of Agresti’s quasi-association 
model with /I = 0 is the quasi-independence 
model proposed by Tanner and Young for 
studying nominal scale agreement [16]. The 
special case with 6, = 0, i = 1, . . . r is the linear 
by linear association model, which is a useful 
model for studying the association between two 
ordinal variables [15]. The special case of quasi 
association with /I = 0 and ?Ii = 0, i = 1, . . , r is 
the independence model. Thus, the quasi-associ- 
ation model can be used to study the extent of 
agreement beyond chance, the extent of agree- 
ment beyond linear by linear association (Si > 0) 
and also the extent of off-diagonal association 
(B non-zero). The model partitions beyond 
chance agreement into a component due to 
linear by linear association and a component 

due to agreement beyond linear by linear associ- 
ation. 

The linear by linear association, quasi- 
independence, and quasi-association models are 
more fully described in the cited references. 

The likelihood ratio chi-square statistic can 
generally be used to compare the fit of the 
quasi-association model with the fit of special 
cases of the model such as linear by linear 
association and quasi independence. When one 
model is a special case of another, more general 
model, it is usually the case that the difference 
in likelihood ratio statistics for the two models 
has a chi-square distribution with degrees of 
freedom equal to the difference in degrees of 
freedom for the two models. An exception to 
this rule is the comparison of estimated category 
scores models with the independence model. 
Likelihood ratio differences for such models do 
not in general follow a chi-square distribution 
and consequently cannot easily be used to com- 
pare goodness of fit [2,15]. The likelihood ratio 
statistic can be used to compare estimated 
scores models with their fixed scores counter- 
parts however [2]. 

Standard methods can be used to test par- 
ameter estimates for significant departures from 
a null value. For example, when the one diag- 
onal parameter version of quasi association is 
fitted, the hypothesis H,: 6 = 0 c_an _be tested 
against H,: 6 > 0 by referring 6/s(6)_ to the 
standard normal distribution, where 6 is_ the 
maximum likelihood estimate of 6 and s(6) is 
the estimated asymptotic standard error of 6. 

Application to Table 1 

Table 5 summarizes the results of fitting 
independence, quasi independence, linear by 
linear association and quasi-association models 

Table 5. Goodness of fit statistics for various models fitted 
to Table 1 

Model G2+ dft 
Independence 470.78 16 
Quasi independence$ 156.92 15 
Linear by linear association 69.91 15 
Quasi association$ 41.61 14 
Estimated scores models: 

linear by linear association 33.02 12 
quasi associationt 17.06 11 

*Likelihood ratio &i-square statistic, for nested models the 
difference in likelihood ratio chi-square statistics has a 
chi-square distribution with degrees of freedom equal to 
the difference in degrees of freedom for the models. 

tResidual degrees of freedom. 
$Both quasi-independence and quasi-association models 

include only one diagonal parameter. 
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to the data of Table 1. In the interests of 
simplicity of interpretation, only the special 
cases of quasi independence and quasi associ- 
ation with a single diagonal parameter are re- 
ported in Table 5. Fixed scores versions of the 
linear by linear association model and the quasi- 
association model were fitted using the integer 
scores (l-5) as category scores. All models were 
fitted by maximum likelihood. Proc Catmod in 
SAS [17] was used to fit all the models except the 
estimated scores models for which a SAS pro- 
gram adapted from Becker’s algorithm [18] was 
written. 

regarding never-drinker vs ex-drinker status (see 
Table 1). 

Comparing the goodness of fit of the quasi-in- 
dependence model to that of the independence 
model reveals clear evidence that the number of 
pairs on the leading diagonal differs markedly 
from the number expected under an indepen- 
dence model (x2 = 313.86, df = 1, p < 0.00001). 
Since the data is ordinal it is more noteworthy 
that the fit of the quasi-association model was 
significantly better than the fit of the linear by 
linear association model (x2 = 28.31, df = 1, 
p c 0.00001). The estimate of the agreement 
parameter, 6, was 0.734 (asymptotic standard 
error: 0.136). Thus, there is strong evidence of 
agreement beyond linear by linear association. 
There is also strong evidence of off-diagonal 
association since the quasi-association model 
fitted significantly better than the quasi-inde- 
pendence model (x2= 115.31, df=l, 
p < 0.00001). The estimate of the association 
parameter, B, under the quasi-association model 
was 0.616 (asymptotic standard error: 0.081). 
Overall, none of the above models fit particu- 
larly well. 

The difference between the likelihood ratio 
statistics for the estimated scores versions of 
linear by linear association and quasi associ- 
ation was also highly significant (2’ = 15.96, 
df = 1, p < 0.00001). The estimate of 6 under 
the estimated scores version of quasi association 
was 0.603 (jackknife estimate of standard error: 
0.152) and the estimate of B was 0.648 (jackknife 
estimate of standard error: 0.091). As with the 
fixed scores version of quasi association, the 
parameter estimates are strongly suggestive of 
both agreement beyond association and off-di- 
agonal association. The improved fit of the 
estimated scores model compared to the fixed 
scores model lends more credence to inferences 
based on the estimated scores model. 

Although the likelihood ratio chi-square stat- 
istic for the estimated scores version of quasi 
association suggests that the model fits quite 
well, examination of the Pearson chi-square 
statistic (x2 = 48.68, 11 df) does not yield the 
same conclusion. This serves as a reminder of 
the sparse nature of Table 1 at the extremes of 
disagreement and the sensitivity of the Pearson 
chi-square to small cell counts. Most of the lack 
of fit is due to the cell: primary respondent 
reports one drink or more per day, proxy re- 
ports ex-drinker. The observed count for this 
cell is 2, while the predicted cell count under the 
estimated scores version of quasi association is 
0.1. 

DI!XUSSION 

The estimated scores models appear to fit There are several inherent problems in the use 
much better. A comparison of the fit of of the weighted kappa statistic for the analysis 
the estimated scores models with that of of ordinal agreement data. The choice of 
their fixed score counterparts yields chi- weighting scheme can greatly influence the esti- 
square statistics with 3 df which are highly mated value of the statistic. Unless a standard 
significant (p < 0.00001). The improved fit weighting scheme is used the comparison of 
can be attributed to differences between the weighted kappa statistics from different studies 
estimated scores and the equal interval would be very difficult. Maclure and Willett [ 131 
integer scores. For the quasi-association and Fleiss and Cohen [14] have suggested a 
model the estimated scores, which were sensible choice of standard weights, but even 
constrained to have a minimum value of 1 with this choice of weights, we have shown that 
and a maximum value of 5 in order to facilitate weighted kappa is not always sensitive to differ- 
comparison with the integer scores, were 1, ences in the observed proportion in exact agree- 
1.24, 2.44, 3.79, 5. The estimated scores suggest ment. While it is true that weighted kappa 
that the first two categories, never-drinker achieves its maximum value when the data are 
and ex-drinker are much closer than indi- concentrated on the leading diagonal, it is also 
cated by the equal interval integer scoring. true that high values of weighted kappa can be 
This reflects the relatively poor agreement achieved when the proportion in exact agree- 
between primary and proxy respondents ment is low (see Table 3). 
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In general it would appear that weighted 
kappa should be regarded primarily as a 
measure of association, a conclusion also ar- 
rived at by Bloch and Kraemer, in the somewhat 
different context of dichotomous data [19]. Alt- 
man and Bland argued that the Pearson corre- 
lation coefficient should not be regarded as an 
agreement index for continuous data as it 
measures association, not agreement [20]. A 
similar argument could be applied to the 
weighted kappa statistic. 

Some investigators have used unweighted 
kappa to analyse ordinal agreement data 
[21-231. While this avoids the need to arbitrarily 
choose a weighting scheme and although un- 
weighted kappa is generally sensitive to changes 
in the proportion in exact agreement, this is an 
unsatisfactory solution. By definition, un- 
weighted kappa is completely blind to off-diag- 
onal association. Therefore, unweighted kappa 
cannot detect differences in off-diagonal associ- 
ation and consequently cannot, by itself, 
provide a complete description of ordinal agree- 
ment data. 

A further difficulty with the use of unweighted 
kappa with ordinal data is that it appears to be 
strongly dependent on the number of categories 
used [ 131. This is particularly important when an 
ordinal scale is derived from a continuous 
measurement, in which case both the definition 
and number of categories are often determined 
arbitrarily. 

The modelling of agreement data yields in- 
sights not easily obtained through the use of 
kappa statistics. By comparing the fit of the 
appropriate models and examining the appro- 
priate parameter estimates, it becomes possible 
to establish whether a given table exhibits agree- 
ment beyond that expected under a linear by 
linear association model and also whether there 
is evidence of positive association off the leading 
diagonal. In addition, models with estimated 
category scores can provide further infor- 
mation, such as the identification of pairs of 
categories for which agreement is relatively 
poor. 

Darroch and McCloud [II] argued that the 
issue of agreement for polychotomous data is 
closely related to the distinguishability of indi- 
vidual pairs of categories. They provide a tech- 
nical definition of category distinguishability 
based on odds ratios for certain sub-tables of an 
agreement table. In addition, they demonstrate 
the connection between the modelling of nomi- 
nal agreement data and estimation of category 

distinguishability. A similar connection exists 
for ordinal data [2, lo]. For example, the version 
of the quasi-association model with a single 
diagonal parameter and fixed, equal interval 
category scores assumes that all pairs of adja- 
cent categories are equally distinguishable. Esti- 
mated scores models make no such assumption. 
Category distinguishability can be estimated for 
each pair of categories in an agreement analysis, 
either by direct estimation based on the ob- 
served data, or via modelling. Although direct, 
as opposed to model-based, estimation of cat- 
egory distinguishability does not explicitly take 
account of category ordering in the estimation 
process, the resulting estimates will usually 
reflect any ordering inherent in the data. Typi- 
cally, estimated category distinguishability in- 
creases with the distance between categories 
WI. 

Given the problems we have outlined with 
weighted kappa and the availability of alterna- 
tive methods of analysis we feel that the contin- 
ued use of weighted kappa as an agreement 
index is questionable. If the weighted kappa 
statistic is to be used it should be supplemented 
with some other analytical strategy such as the 
modelling approach outlined in this paper or the 
estimation of category distinguishability re- 
ferred to above. 
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