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SUMMARY 

This paper provides exact power contours to guide the planning of reliability studies, where the parameter of 
interest is the coefficient of intraclass correlation p derived from a one-way analysis of variance model. The 
contours display the required numbers of subjects k and number of repeated measurements n that provide 80 
per cent power for testing H,: p < p, versus H, : p > po at the 5 per cent level of significance for selected values 
of po . We discuss the design considerations of these results. 
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INTRODUCTION 

The estimation of reliability is a common feature of scientific experimentation since all 
measurements are subject to error, particularly those made by humans. As discussed by Shrout and 
Fleiss,’ measurement error can seriously affect statistical analysis and interpretation; it therefore 
becomes important to assess the amount of such error by calculation of a reliability coefficient. A 
frequently adopted model to investigate reliability is 

Yij = p +  + e i j ,  

where p is the grand mean of all measurements Y in the population, ai reflects the effect of the 
characteristic under measure for subject i, and eij  is the error of measurement, j = 1,2, .  . . , n; 
i = 1,2, . . . , k. The error of measurement may result from both the measuring device itself and the 
conditions surrounding the measurement. We assume the term ai remains constant across the 
repeated measurements on the same person. 

Suppose we assume further that the person effects {ai} are normally and identically distributed 
with mean zero and variance o i ,  the errors { e i j }  are normally and identically distributed with mean 
zero and variance a:, and the {a,}, {eij} are completely independent. Then the population 
intraclass correlation coefficient is p = o:/(o’, + 0:) and we use the one-way analysis of variance 
(ANOVA) as a framework for drawing inferences concerning p .  The ANOVA corresponding to (1) 
appears in Table I, where the sample intraclass correlation 

F - 1  
F + n - 1 

- - MSA - MSW 
[MSA + (n - 1)MSWI 

r =  

estimates p. A large value of r implies greater variability among individuals than within individuals, 
i.e. that the repeated observations on a given subject show stability. The actual value of r estimates 
the proportion of total variance accounted for by subject to subject variation, and we may therefore 
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Table I. Analysis of variance for a reliability model 

Degrees of Sum of 
Source of variation freedom squares Mean square F 

Among subjects k - l  SSA MSA =SSA /(k - 1) MSA/MSW 
Within subjects k(n - 1) SSW MSW = SSW /[k(n - l)] 

k k n  

SSA = C n(Fi. - F..)' ssw = c c (Yij-Pi.)2 
i= 1 j = l  j = 1  

n 

Fj, = Y i j / n  
j =  1 

regard it as a measure of reliability. With dichotomous, rather than continuous data, r is equivalent 
to the Kuder-Richardson formula 20 reliability coefficient (Kraemer and Korner'). 

Although intraclass correlation as a measure of reliability has garnered much attention in the 
literature (e.g. Shrout and Fleiss,' Fleiss et d3), very little has appeared with regard to sample size 
requirements. In this paper we consider the exact values of k and n required to test H,: p = po 
versus H ,  : p > p,, where p, is a specified criterion value of p. Kraemer and Korner' have 
considered this problem for the case n = 2 (i.e., test-retest data), and Kraemer" has considered it for 
the case in which either k or n is large. These authors' results, however, are approximate rather than 
exact and are based on a two-way rather than a one-way ANOVA model. A further limitation is 
their provision of only the required value of k for fixed n; the results below deal with power 
requirements as both k and n vary. 

We note the use of the estimator r in many contexts that involve repeated observations in each of 
several groups. Haggard' gives three such examples: 

(i) a design with k subjects, each evaluated by n judges; 
(ii) a design with a single subject evaluated n times on each of k occasions by the same judge; 
(iii) a design in which a single subject provides k types of measurements, each type replicated at  n 

different times by a single judge. 

Case (i) consists of replication of the judges and r estimates interjudge concordance. In case (ii), 
r estimates the stability of the subject who provides a number of samples. In case (iii), r estimates 
the consistency of the single judge over intervals of time. In each case, interest focuses on one source 
of variation - judges, tests, trials -and r is an appropriate measure of reliability. 

To simplify discussion, however, we consider r in this paper to represent the ratio of among 
subject variability to total variability. Thus, throughout we refer to k as the 'number of subjects' 
and n as the 'number of measurements per subject'; we assume it understood that our results apply 
to a broad range of investigations that involve data collected on k samples of n repeated 
observations, and with interest on a single source of variation. 

METHOD 

We assume interest focuses on the test H,: p < p, versus H1 : p > p, at a chosen level of 
significance a and with power 1 - j3. Selection of the criterion value po depends on a choice of a 
minimum value of p that the investigators consider acceptable. The choice po = 0 often is not 
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SAMPLE SIZE FOR RELIABILITY STUDIES 443 
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Figure 1 .  Power contours for testing H,: p = 00 versus H, : p  > 0.0 at a = 0.05, /Y = 0.20 

directly relevant, since rejection of H o :  p = 0 simply provides reassurance at  the chosen a level of 
greater variation among repeated observations on the same subject than among different 
subjects -a fact which we can usually take for granted. Landis and Koch6 have characterized values 
of reliability coefficients as follows: slight (0.20), fair (0.21-0.40), moderate (0.41-0.60), 
substantial (0.61-0.80), and almost perfect (0.8 1-1.00). Although arbitrary, these divisions provide 
useful benchmarks. For example, an investigator who wishes to demonstrate a 'substantial' level of 
reliability would, according to these guidelines, test H,:  p < 060 versus H , :  p > 0.60. 

One performs the test H o :  p < po versus H1 : p > p, by reference of the value of F in Table I to 
the quantity CF,; u1 , u 2 ,  where C = 1 + [np,/(l-  p , ) ] ,  and F a ;  u l ,  u2 is the tabular value of F with 
u l ,  u2 degrees of freedom at the a per cent level of significance. One may calculate the power of this 
test (Scheffe') as 

(2) 1 - fi = Pr { F 2 Co F a ;  u I ,  172 } 
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Figure 2. Power contours for testing H o :  p = 0 2  versus H ,  : p > 0 2  at a = 0.05, B = 0.20 

where 

~ 1 z k - l  
= k ( n -  1) 

co = (1 + ne, ) / ( I  + ne) 
60 = P o / ( l  - P o )  

0 = P / ( l  - P I .  

Our investigation sought to generate contours of equal power to test H o  : p = po versus HI : p > po 
in terms of k and n for fixed values of po and p at a = 0.05. Since conventional power levels are set at  
80 per cent or more, we fixed equation (2) at 0.80 and 0.90 for this purpose. We then generated the 
contours numerically for po = 0,0.2,0.4,0*6,0.8 and selected values of p > p o .  For reasons of 
space we present the results only for 1 - B  = 0.80; upon request, we will make available 
corresponding results for 1 - B = 0.90. 
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Figure 3. Power contours for testing H,: p = 0.4 versus HI:  p > 0 4  at a = 005, /I = 0.20 

COMPUTATIONS 

All programs were written in Fortran using the RM/FORTRAN compiler, and were run on an 
IBM PC. For each chosen value of p ,  po  and 1 < k < 50, and from equation (2) with use of an 
iterative method of successive bisection, we calculated to two decimal places the minimum value of 
n that satisfies the power requirements. We calculated the exact probabilities and percentage points 
of the F distribution with use of thecomputer algorithms for the incomplete beta distribution given 
in Kennedy and Gentle.' 

RESULTS 

The results appear in Figures 1-5 for po  = 0,0.2,0-4,0-6, and 0.8, respectively. Each figure shows 
the values of k and n that correspond to a power of 80 per cent for a test of H o :  p = po  versus 
H, : p > po  at a = 0.05. For example, suppose we wish to demonstrate that p > 0-2, i.e. in planning 
an investigation we characterize measurement reliability as at least 'fair'. If we wish 80 per cent 
certainty for achieving a significant result at the 5 per cent level when p = 0.4, then Figure 2 shows 
that we require an n of about 13 when the number of available subjects k is 20. With 40 subjects 
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Figure 4. Power contours for testing Ho: p = 0 6  versus HI : p > 0 6  at 01 = 005, /3 = 0.20 

available, n = 5 measurements per subject will suffice to achieve the desired power. Our actual 
choice of a (k, n) combination depends, of course, on the relative difficulty and cost of recruitment 
of subjects as compared to attainment of replicate measurements. 

Figures 1-5 also reveal some interesting results concerning the relative influence of k and n on the 
achieved power. For example, we see the tendency towards a ‘threshold’ level of k beyond which any 
increase in k, with n held constant, brings very little return. Thus if po = 0.4, Figure 3 shows that at 
p = 0.8,15 subjects each with two measurements provide essentially the same power as 50 subjects 
each with two measurements. At p = 06,40 subjects with n = 3 provide about the same power as 
50 subjects with n = 3. This feature of the contours reflects a general property of the estimator r: an 
increase in n for fixed k provides more information than an increase in k for fixed n. 

The results also show that the required value of n for a given k increases very rapidly as k declines. 
At po = 0 2  and p = 0.6, for example, a decrease in k below 10 results in a steep increase in the value 
of n required to maintain the power at 80 per cent. Thus one use of these results is as a guide in 
choice of the minimum number of subjects required to achieve fairly stable power to test Ho. 
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Figure 5. Power contours for testing H , :  p = 0.8 versus HI : p > 0-8 at a = 0.05, /? = 0.20 

DISCUSSION 

The power contours presented here rely on an underlying one-way analysis of variance model. Such 
a model implies that systematic differences among the n measurements on a given subject are not 
separable from random error. If, for example, n different judges or examiners make the n 
measurements, the within subject sum of squares shown in Table I combines the effects due to 
judges and to random error. An alternative model for the reliability study is two-way analysis of 
variance, which partitions the within subject sum of squares into a between-judges and a residual 
component sums of squares. If a study is designed to estimate both the variation among judges as 
well as variation among subjects, then the results presented here do not apply and the two-way 
model is appropriate. The advantage of the one-way model is its simplicity, with some loss in 
precision compared with a two-way model that has large inter-judge differences. It follows that the 
sample size requirements of Figures 1-5 overestimate the true sample size requirements when one 
adopts a two-way model for the analysis, i.e. the results presented here are conservative. Shrout and 
Fleiss’ provide further discussion of the factors influencing the choice of a reliability model. 

It is useful in the analysis of a reliability study to construct confidence limits for the reliability 
coefficient. Let F,denote the tabulated value of the F distribution with k - 1 and k(n - 1) degrees of 
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freedom that cuts off the proportion a in the upper tail. Then an exact one-sided loO(1 - a) per cent 
confidence interval for r is 

r > ( F - F , ) / [ F + ( n - l ) F , , ]  

If this lower bound indicates acceptable reliability, then one may rely on single measurements with 
confidence. Fleiss’ provides further discussion on the analysis aspects of reliability studies. 
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