
c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 8 8 ( 2 0 0 7 ) 62–74

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

Computer programs for the concordance
correlation coefficient

Sara B. Crawforda,∗, Andrzej S. Kosinskib, Hung-Mo Linc,
John M. Williamsona, Huiman X. Barnhartb

a Division of Parasitic Diseases, Centers for Disease Control and Prevention, 4770 Buford Highway NE (MS-F22),
Atlanta, GA 30341, United States
b Department of Biostatistics and Bioinformatics and Duke Clinical Research Institute, Duke University,
PO Box 17969, Durham, NC 27715, United States
c Department of Health Evaluation Sciences, Penn State College of Medicine, A210 600 Centerview Dr.,
Hershey, PA 17033, United States

a r t i c l e i n f o

Article history:

Received 18 December 2006

Received in revised form 5 July 2007

Accepted 5 July 2007

Keywords:

Agreement

Bootstrap

Concordance correlation coefficient

a b s t r a c t

The CCC macro is presented for computation of the concordance correlation coefficient

(CCC), a common measure of reproducibility. The macro has been produced in both SAS

and R, and a detailed presentation of the macro input and output for the SAS program

is included. The macro provides estimation of three versions of the CCC, as presented by

Lin [L.I.-K. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics

45 (1989) 255–268], Barnhart et al. [H.X. Barnhart, J.L. Haber, J.L. Song, Overall concordance

correlation coefficient for evaluating agreement among multiple observers, Biometrics 58

(2002) 1020–1027], and Williamson et al. [J.M. Williamson, S.B. Crawford, H.M. Lin, Resampling

dependent concordance correlation coefficients, J. Biopharm. Stat. 17 (2007) 685–696]. It also
Dependence

Reproducibility

provides bootstrap confidence intervals for the CCC, as well as for the difference in CCCs

for both independent and dependent samples. The macro is designed for balanced data

only. Detailed explanation of the involved computations and macro variable definitions are

provided in the text. Two biomedical examples are included to illustrate that the macro can

be easily implemented.
1. Introduction

In the health sciences, it is often necessary to study the
reproducibility of continuous measurements made using a
certain diagnostic tool or method. As technology brings forth
new tools and methods, we are interested in evaluating the
consistency of evaluations made using the new method as

well as comparing this measure to the current gold standard
if one exists. The concordance correlation coefficient (CCC)
provides a means for examining the reproducibility of contin-
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uous measurements made by multiple raters using a single
method or by two or more raters using two methods. Sev-
eral other reproducibility measures are available, such as the
Pearson correlation coefficient, the intraclass correlation coef-
ficient [4,5], and the within-subject coefficient of variation
[6]. In general, these measures do not address both precision
and accuracy as does the concordance correlation coefficient;

however, the equivalency and similarities of the intraclass cor-
relation coefficient to the concordance correlation coefficient
under certain scenarios has been discussed by Nickerson [7],

erved.
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arrasco and Jover [8], and Barnhart et al. [9]. The CCC mea-
ures how far the fitted linear relationship of two variables X
nd Y deviates from the concordance line (accuracy) and how
ar each observation deviates from the fitted line (precision).

There are several forms of the concordance correlation
oefficient (CCC). The CCC for two raters evaluating a single
ethod was presented by Lin [1,10]. Barnhart et al. [2] con-

idered an overall CCC for multiple raters evaluating a single
ethod, which is equivalent to the functions presented by

in [1,11] and King and Chinchilli [12]. Williamson et al. [3]
xamined the agreement between two methods for multiple
aters. The estimation of these forms of the CCC can be con-
ucted by estimating the means, variances, and covariances
or the ratings. As an alternative to estimation by the method
f moments, Carrasco and Jover [8] propose estimating the
CC using variance components from a mixed model. Several
ethods have been proposed for inference regarding the CCC.

or two raters evaluating a single method, Lin [1] proposed
n asymptotic approach for computing variance estimates.
or the overall CCC for multiple raters evaluating a single
ethod, King and Chinchilli [12] conducted inference using
U-statistics approach, while Barnhart et al. [2] explored both
GEE and bootstrap approach. Williamson et al. [3] explored
ermutation testing and the bootstrap for agreement between
wo methods for multiple raters.

Here we describe the CCC macro written in SAS [13] which
s designed to estimate all three forms of the CCC. The macro
lso provides confidence intervals for these estimates as well
s for the difference in two CCCs. Where applicable, an asymp-
otic confidence interval is computed for both the estimation
f the CCC as well as for the estimation of the difference in
CCs [1]. Otherwise, bootstrap confidence intervals are com-
uted with the CCC macro [2,3,14]. The CCC macro was also
ritten in R with the same input and output [15]. General

xamples for the macro call in R are included in Section 3.3
etailing the required parameters and output for each analy-
is, but all of the practical examples are presented in SAS.

. Methods

.1. Estimation of concordance correlation coefficients

major component of the CCC macro is to provide an estimate
f the concordance correlation coefficient (CCC). The formula
sed to compute the CCC is dependent upon the number of
aters and the number of methods specified by the user. When
single method is evaluated by two raters, the CCC proposed

y Lin [1] is used:

c = 2�12

�2
1 + �2

2 + (�1 − �2)2
, (1)

here �1 and �2
1 represent the mean and variance for the first

ater, �2 and �2
2 represent the mean and variance for the sec-

nd rater, and � is the covariance for the first and second
12

ater. An estimate for the CCC can be computed by substitut-
ng the corresponding sample estimates for the parameters.

hen a single method is evaluated by multiple raters, we
pply the overall CCC presented by Barnhart et al. [2] for R
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raters:

�c
o =

2
∑R−1

r=1

∑R

s=r+1�rs

(R − 1)
∑R

r=1�2
r +

∑R−1
r=1

∑R

s=r+1(�r − �s)2
. (2)

Here, �r and �2
r denote the mean and variance for the rth rater,

and �rs is the covariance for raters r and s. The overall CCC
in Eq. (2) is the same as that presented by Lin in the section
on future studies [1,11] and the generalized CCC presented by
King and Chinchilli [12] when the squared distance function
is used. Williamson et al. [3] proposed another version of an
overall CCC for measuring the agreement between two meth-
ods by the same R raters, such as an experimental method and
the current gold standard:

�c
12 = 2

∑R

r=1�12r∑R

r=1(�2
1r + �2

2r) +
∑R

r=1(�1r − �2r)
2

, (3)

Here �mr and �2
mr represent the mean and variance for the

rth rater evaluating the mth method, and �12r represents the
covariance of the first and second methods for the rth rater.
Again in Eqs. (2) and (3) the corresponding sample estimates
can be substituted for the parameters to estimate the CCC.
These three equations for the concordance correlation coef-
ficient are included in the CCC macro. The application of
each equation depends on the number of methods and raters
entered by the macro user.

2.2. Confidence intervals for the CCC

In the case of two raters evaluating a single assessment
method, we can calculate an asymptotic confidence interval
for the CCC. Lin showed that the estimate for the CCC, �̂c, has
an asymptotic normal distribution with mean �c and variance:

�2
�̂c = 1

n − 2

[
(1 − �2)(�c)2(1 − (�c)2)

�2

+2(�c)3(1 − �c)u2

�
− (�c)4u4

2�2

]
. (4)

where u = (�1 − �2)/
√

�1�2 and � represents the Pearson corre-
lation coefficient. Note that Eq. (4) is undefined when � = 0. Lin
also suggests the use of a Z-transformation in order to achieve
asymptotic normality of the estimator:

Ẑ = tan h−1(�̂c) = 1
2

ln

(
1 + �̂c

1 − �̂c

)
. (5)

The Z-transformation is asymptotically normally distributed
with mean

Z = tan h−1(�̂c) = 1
2

ln
(

1 + �c

1 − �c

)
(6)

and variance
�2
Ẑ

= 1
n − 2

[
(1 − �2)(�c)2

(1 − (�c)2)�2
+ 2(�c)3(1 − �c)u2

�(1 − (�c)2)
2

− (�c)4u4

2�2(1 − (�c)2)
2

]
.

(7)
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Fig. 1 – Macro options, variables, and output for CCC estimation.

Fig. 2 – Macro options, variables, and output for the estimation and testing of the difference in CCCs.
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This Z-transformation can be used to calculate an asymp-
otic, non-symmetric confidence interval for the CCC. The

acro provides the option of performing a hypothesis test for
he equality of two independent CCCs. When only two raters
re evaluating a single method for each group of independent
ubjects, the variance for individual CCC presented in Eq. (4)
an be used to construct an asymptotic confidence interval for
he difference in CCCs.

The bootstrap is a resampling approach used frequently
n applied statistics [14]. It involves creating a large num-
er of resampled datasets sampled with replacement from
he original sample. The test statistic is calculated for each
esampled dataset in order to create a probability distribution
or the test statistic of interest. When subjects are evaluated
y multiple raters and/or two methods, the macro generates
ootstrap confidence intervals for the CCC. Both the percentile
nd the bias accelerated and corrected (BCa) bootstrap confi-
ence intervals can be computed. For the calculation of the
00 × (1 − ˛)% bootstrap confidence intervals, a large number
f bootstrap samples are selected from the original sample

ith replacement. The estimate of the CCC, �̂c∗, is calculated

or each resampled dataset. The resulting percentile bootstrap

onfidence interval is
(

�̂c∗(˛/2)
, �̂c∗((1−˛)/2)

)
, where �̂c∗(˛/2)

is the

˛/2)th empirical percentile of the distribution of resampled

Table 1 – CCC estimation for one method with two or more rate
b i o m e d i c i n e 8 8 ( 2 0 0 7 ) 62–74 65

CCCs. The weighted average definition of percentile is used.
The BCa confidence interval is also a percentile interval, but
the percentiles are not based solely on (˛/2) and ((1 − ˛)/2).
The percentiles are adjusted by the median bias of the boot-
strap samples as well as the acceleration of the standard error
[14,16].

2.3. Estimation of the difference in CCCs

The CCC macro also can estimate the difference in CCCs and
calculate a bootstrap confidence interval for the difference.
This confidence interval can be used to test for equal con-
cordance correlation coefficients by determining whether the
null value lies in the confidence interval. The difference in
CCCs can be assessed under three scenarios: a set of raters
evaluating a method in each of two independent groups of
subjects; a set of raters evaluating two methods over the same
group of subjects; and a set of raters evaluating three methods
(such as for two experimental methods and a gold standard)
over the same group of subjects. Note that the third sce-

nario involves the evaluation of three methods, but does not
require the third method to be a gold standard. In the writing
of the macro and all of the macro description, the reference
method is referred to as the gold standard in order to clar-

rs
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ify which method is serving as the referent method. Under
the first scenario, we are interested in testing the hypothe-
sis H0 : �c

1 = �c
2 versus H1 : �c

1 �= �c
2, under the second scenario,

H0 : �c
o1 = �c

o2 versus H1 : �c
o1 �= �c

o2, and under the third sce-
nario, H0 : �c

1,Gold = �c
2,Gold versus H1 : �c

1,Gold �= �c
2,Gold. The test

statistics are �̂c
diff = �̂c

1 − �̂c
2, �̂c

o,diff = �̂c
o1 − �̂c

o2, and �̂c
Gold,diff =

�̂c
1,Gold − �̂c

2,Gold, respectively.
In estimating and testing the difference of independent

CCCs where each group of subjects is evaluated by two raters
(scenario 1), an asymptotic hypothesis test can be conducted
based on Lin’s CCC, shown in Eq. (1), and asymptotic stan-
dard error, shown in Eq. (4). A bootstrap confidence interval
also can be used for testing the hypothesis H0 : �c1 = �c2. With
this approach, a 95% bootstrap confidence interval is calcu-
lated for the difference in CCCs and the null hypothesis is
rejected at an alpha level of 0.05 if the confidence interval
does not contain zero. The construction of a bootstrap con-
fidence interval requires resampling the original sample with
replacement and then calculating the test statistic of inter-
est a large number of times (e.g. 2000) in order to create a
probability distribution for the test statistic. Because we are
making an assumption of the equality of the CCCs but not

necessarily the equality of the underlying distributions under
the null hypothesis, each bootstrap resample for independent
groups will be conducted within each of the two groups and
then the difference in the CCCs will be calculated. In the case

Table 2 – CCC estimation for agreement between two methods
n b i o m e d i c i n e 8 8 ( 2 0 0 7 ) 62–74

of dependent CCCs, either for two competing methods (sce-
nario 2) or two experimental methods and a gold standard
(scenario 3), we have one set of subjects over which multi-
ple raters can evaluate multiple methods. Because a single
subject is being evaluated in the case of dependent CCCs,
the bootstrap resampling will be done at the subject level
[3,14,16].

3. Computer program

3.1. Macro overview

The CCC macro is designed to perform a variety of analy-
ses pertaining to the concordance correlation coefficient. The
macro can provide estimates of the overall CCC along with
confidence intervals, either asymptotic or bootstrap, for one
method with multiple raters, or for two methods with multiple
raters (i.e. an experimental method and a gold standard). It will
also perform estimation of the difference in two CCCs under
the assumptions of both independence and dependence, and
calculate confidence intervals using either asymptotic theory

or bootstrap methodology. See Fig. 1 for a flowchart describ-
ing the macro capabilities, the required and optional macro
variables for input, and the standard macro output for estima-
tion of a single CCC and see Fig. 2 for a flowchart describing

with two or more raters
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he same macro characteristics for estimation and testing of
he difference in CCCs. The macro is written for balanced
ata, and will delete any incomplete lines of data from the
nalysis.

.2. Input parameters

f the program is used to compute an estimate of the overall
CC or to perform a hypothesis test for dependent data,
ne dataset is required for input, with one line of data per
ubject. The value assessed by each rater for each method
ust be recorded in a separate variable. If the program is

sed to perform a hypothesis test for independent data,
wo datasets are required. The first will contain one line of
ata for each subject assessed in the first group with one
ariable for each rater, while the second will contain one
ine of data for each subject assessed in the second group.
he following is a list of all macro variables available for input.

NALYSIS: Possible values are 1, 2, 3, 4, or 5. An entry
or 5 will request testing for the difference
CCCs as well as an asymptotic or bootstra
1: indicates estimation of the overall CCC
2: indicates estimation of the CCC for asse
raters (Table 2)
3: requests hypothesis testing of the diffe
single method in each of two independen
4: requests hypothesis testing of the diffe
methods over the same group of subjects
5: requests hypothesis testing of the diffe
the agreement between an experimental m
(Table 5)

ATASET1: Main input dataset for all estimation and
ATASET2: Second dataset for the independent hypo
ATERS1: String of names for the variables represen

by a space. For example, RATERS1 = rater1
ATERS2: String of names for the variables represen

separated by a space
ATERS GOLD: String of names for the variables represen

separated by a space
LPHA: Type-I error rate. Generates (1 − ˛) × 100%
UT: Name of output dataset where the analys
OOTCI: For analyses where the bootstrap confiden

confidence interval will be produced. Poss
OOTSTRAP: Indicates the type of bootstrap confidence

and ‘B’ for BCa (default = ‘B’)
S: Number of bootstrap samples (default = 20
OOT SEED: Seed for generating the bootstrap samples

.3. Required parameters and output for each analysis

hen invoking the CCC macro, the macro variable ANALYSIS
ust always be specified. The other variables that are required

s well as the output that will be produced are dependent
n the value of this macro variable ANALYSIS. The required
nd optional macro variables for each type of analysis, as

ell as the output that will be produced, is summarized in

igs. 1 and 2. A summary of the macro functioning, an exam-
le of the required form of the dataset, the macro invocation
or each type of analysis specifying all required and optional
b i o m e d i c i n e 8 8 ( 2 0 0 7 ) 62–74 67

or 2 requests estimation of a single CCC. An entry of 3, 4,
CCs, and will provide both estimation of the difference in

fidence interval for the difference. Specifically
ne method with two or more raters (Table 1)
g the agreement between two methods with two or more

in independent CCCs for a set of raters evaluating a
ups of subjects (Table 3)

in dependent CCCs for a set of raters evaluating two
e 4)
in two dependent CCCs, where each CCC is measuring

od and a gold standard over the same group of subjects

ndent hypothesis tests
s test
the raters evaluating the first or only method, separated
r2 rater3
the raters for the second method when applicable,

the raters evaluating the gold standard when applicable,

dence intervals (default = 0.05)
ults are stored (default = work.outdata)
terval is optional, indicates whether or not a bootstrap

values are ‘Y’ for yes and ‘N’ for no (default = ‘N’)
rval to be generated. Possible values are ‘P’ for percentile

fault = clock)

macro variables, and an example of the macro output is pre-
sented in Tables 1–5. Table 1 provides an example for the
overall estimation of the CCC for one method with multi-
ple raters; Table 2, the estimation of the CCC for agreement
between two methods with multiple raters; Table 3, the esti-
mation of the difference between two independent CCCs for
one method with multiple raters, which is an extension of
analysis = 1; Table 4, the estimation of the difference between
two dependent CCCs for one method with multiple raters,
which is also an extension of analysis = 1; Table 5, the esti-
mation of the difference between two dependent CCCs for
two methods with multiple raters, which is an extension of
analysis = 2. The words in italics represent generic dataset and
variable names that would be altered according to the users
data.

4. Examples

4.1. Biochemical in vitro assays

In a study of biochemical in vitro assays, researchers were

interested in the reproducibility of toxicity measurements
made by two different assays: cellular adenosine triphosphate
activity using cell line 76 (ATP-76) and cellular adhesion using
cell line 74 (CLA-74) [1]. The percent cell function measured
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Table 3 – Testing for the difference between two independent CCCs with two or more raters
by each assay at two independent trials conducted 1 week
apart was recorded for 10 materials of varying toxicity. We are
interested in assessing the agreement of the measurements
produced over the two independent trials for each assay, as
well as whether the agreement between the two assays dif-
fers. The SAS code and output for this example are located in
Appendix A.

For the estimation of the assay-specific CCC measured
over two trials, we can use Lin’s CCC [1] presented in
Eq. (1). For assay ATP-76, the estimate for the CCC is
0.97 with a 95% asymptotic confidence interval of (0.89,
0.99). As an option, a BCa bootstrap confidence interval of
(0.92, 0.99) is also produced. For assay CLA-74, the esti-
mate for the CCC is much lower at 0.28. The asymptotic
95% confidence interval is (−0.23, 0.67) and a bootstrap
confidence interval is (−0.20, 0.88). Calculating a bootstrap
confidence interval for the difference in dependent CCCs,

we find that the difference between ATP-76 and CLA-74 is
0.69 (0.07, 1.15), or that the reproducibility of assay ATP-
76 is significantly greater than the reproducibility of assay
CLA-74.
4.2. Carotid stenosis

A carotid stenosis screening study was conducted at Emory
University from 1994 to 1996 [2,3,17]. Three observers, each
using three diagnostic methods, assessed the stenosis of the
left and right carotid arteries of 55 patients. The three meth-
ods were magnetic resonance angiography two-dimensional
time of flight (MRA 2D), magnetic resonance angiography
three-dimensional time of flight (MRA 3D), and intra-arterial
angiogram (IA), where IA is considered the current gold stan-
dard. We are interested in assessing the agreement of the
three observers within each method, and then comparing
this agreement between each of the methods. We are also
interested in whether the agreement between each of the
experimental methods, MRA 2D and MRA 3D, and the gold
standard are different. We can explore each of these ques-
tions separately for the left and right arteries. The SAS code

and output for the example are located in Appendix B, but is
restricted to the left side.

We estimated the overall concordance correlation coeffi-
cient for each method with three raters, as shown in Eq. (2)
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Table 4 – Testing for the difference between two dependent CCCs with two or more raters
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1,2,11,12], as well as a 95% BCa bootstrap confidence interval
ased upon 2000 bootstrap replicates. For the left artery, the
CCs for MRA 2D, MRA 3D and the gold standard were 0.62

0.44, 0.77), 0.64 (0.45, 0.79), and 0.88 (0.69, 0.94), respectively.
imilarly, the CCCs for the right artery were 0.61 (0.43, 0.75),
.62 (0.45, 0.76), and 0.92 (0.85, 0.95), respectively. These esti-
ates are all significantly greater than zero. The estimates

f the CCC for MRA 2D and MRA 3D appear to be very simi-
ar while the estimates for IA appear to be larger, indicating
hat the agreement among raters for the gold standard may be
reater than the agreement among raters for the two experi-
ental methods. We can test the difference in these overall

CCs using a bootstrap confidence interval [3]. The differ-
nces in estimated CCCs, as well as the bootstrap confidence
ntervals based upon 2000 bootstrap samples, showed that the
CCs for MRA 2D and IA and the CCCs for MRA 3D and IA were
ignificantly different for the left [MRA 2D − IA = −0.26 (−0.44,
0.12); MRA 3D − IA = −0.24 (−0.44, −0.09)] and right [MRA
D − IA = −0.31 (−0.48, −0.17); MRA 3D − IA = −0.30 (−0.48,
0.15)] arteries. These results indicate that the agreement

mong raters for the experimental methods is significantly
orse than the agreement for the gold standard.

We can further assess the agreement of the three raters
etween two methods, the experimental method and IA, for
both MRA 2D and MRA 3D by applying the formula for the
overall CCC for two methods found in Eq. (3) [3] and calculat-
ing a 95% BCa bootstrap confidence interval. In the left artery,
the CCC for MRA 2D and IA is 0.56 (0.37, 0.72) while the CCC
for MRA 3D and IA is 0.48 (0.27, 0.65). In the right artery, the
CCCs are 0.63 (0.46, 0.75) and 0.56 (0.38, 0.75), respectively. We
can also test the difference between these overall CCCs for
the left and right arteries in order to see whether the agree-
ment among raters over MRA 2D and IA is greater than that
for MRA 3D and IA. Using the bootstrap confidence interval for
dependent CCCs, we find that the difference for the left artery
is 0.08 (−0.02, 0.22) and the difference for the right artery is
0.07 (−0.08, 0.23). These results indicate that the differences
in overall agreement are not statistically significant.

5. Macro availability and run time

The CCC macro written in SAS [13], R [15], or S-PLUS [18] can
be obtained by directly contacting the authors or by access-

ing the following websites: http://www.statisticaldisplays.org
or http://www.personal.psu.edu/hxl28/research/CCCprogram.
The SAS macro was written in v9, but because some of the IML
functions available in SAS v9 are not available in SAS v8, a v8

http://www.statisticaldisplays.org/
http://www.personal.psu.edu/hxl28/research/CCCprogram
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Table 5 – Testing for the difference between two dependent CCCs for two methods with two or raters
macro also was created. This macro performs the same func-
tions, but requires more computing time, and can be obtained
following the above instructions. The program for R and S-
PLUS was designed to be a self-contained function, does not
require bootstrap packages, and should run in all versions of
the R or S-PLUS software. It was tested for R version 1.9.0 and
S-PLUS version 6.1.2 and runs faster in R than in S-PLUS if
bootstrap computations are requested. For the examples in
SAS, the macro was run in SAS v9 in the PC environment on
a desktop computer with an Intel® Pentium® 4 processor of
1.80 GHz speed and 512 MB of RAM. For the examples in R, the
function was also run in the PC environment on a desktop
computer with an Intel® Pentium 4 processor with 2.60 GHz
speed and 512 MB of RAM.

The amount of CPU time required to run the macro will vary
considerably based upon the number of subjects, the num-
ber of raters, and the number of bootstrap samples specified
(where applicable). For the carotid stenosis example, when
estimating the overall CCC and computing a bootstrap con-

fidence interval based on 2000 bootstrap samples, the amount
of required CPU time for the SAS macro was approximately
20–21 s. The amount of CPU time required for the R function
for the same example was approximately 1.5 s. The estimation
of the difference in dependent CCCs and the computation of
a bootstrap confidence interval based on 2000 samples took
40–41 s of CPU time in SAS and 3 s in R. When exploring the
CCC for two methods in the carotid stenosis example (such
as for an experimental method and a gold standard), the esti-
mation of the CCC and a bootstrap confidence interval took
17–19 s in SAS and 3.5 s in R, and the estimation of the differ-
ence in dependent CCCs and a bootstrap confidence interval
took 34–35 s in SAS and 7 s in R.
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ppendix A. Biochemical in vitro assay
xample

he following output displays a snapshot of the dataset
ssays.sas7bdat for the first three subjects only. The variable id

epresents the subject number. Trial1A and trial2A represent
he results for each trial for assay A while trial1C and trial2C
epresent the results for each trial for assay C. The incomplete
AS code and output follow. Note that a unique example for
b i o m e d i c i n e 8 8 ( 2 0 0 7 ) 62–74 71

each type of call is given, while similar replications were
excluded.
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Appendix B. Carotid stenosis example

The following output displays a snapshot of the dataset
ica left.sas7bdat for the first three subjects. The variable id rep-

resents the subject number. The variables m1r1, m1r2, and
m1r3 represent the values for the three raters evaluating
method MRA 2D, the variables m2r1, m2r2, and m2r3 represent
n b i o m e d i c i n e 8 8 ( 2 0 0 7 ) 62–74

the values for the three raters evaluating method MRA 3D, and
the variables m3r1, m3r2, and m3r3 represent the values for
the three raters evaluating the gold standard IA. The incom-
plete SAS code and output follow. Note that a unique example
for each type of call is given, while similar replications were
excluded. The dataset, SAS code, and output are restricted to
the left side only.
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