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WEIGHTED KAPPA:

NOMINAL SCALE AGREEMENT WITH PROVISION FOR SCALED
DISAGREEMENT OR PARTIAL CREDIT

JACOB COHEN1

New York University

A previously described coefficient of agreement for nominal scales, kappa, treats
all disagreements equally. A generalization to weighted kappa (KW) is presented.
The KW provides for the incorporation of ratio-scaled degrees of disagreement (or
agreement) to each of the cells of the k X k table of joint nominal scale assignments
such that disagreements of varying gravity (or agreements of varying degree) are
weighted accordingly. Although providing for partial credit, KW is fully chance
corrected. Its sampling characteristics and procedures for hypothesis testing and
setting confidence limits are given. Under certain conditions, KW equals product-
moment r. Although developed originally as a measure of reliability, the use of
unequal weights for symmetrical cells makes KW suitable as a measure of validity.

A previous article (Cohen, 1960) described
K (kappa), an index of agreement for use with
nominal scales, as analogous to an alternate
form reliability coefficient for magnitude-
scaled data. Reliability has long been the key-
stone of psychometric theory (Gulliksen, 1950;
Rozeboom, 1966), but the basic models have
been developed for one-dimensional equal in-
terval scales. Reliability plays the same crucial
role in nominal scales as it does in magnitude
scales (e.g., setting an upper bound for em-
pirical validity), yet the relevant methodologi-
cal literature is impoverished. The need to
assess nominal scale reliability arises in fields
as diverse as psychiatric diagnosis (Spitzer,
Cohen, Fleiss, & Endicott, 1967) and survey
interview coding (Scott, 1955).

Past approaches to the problem were de-
ficient both in the indices used to measure
degree of agreement and in their statistical
treatment. The most frequently used index has

1 The author is greatly indebted to Joseph L. Fleiss of
Columbia University School of Public Health for de-
veloping the asymptotic standard error of an observed
K«I. Acknowledgments are also due Robert L. Spitzer
of Biometrics Research, whose research in computer-
based psychiatric diagnosis stimulated the work re-
ported here, and Patricia Waly, for a critical reading of
the manuscript.

been percentage or proportion of agreement
(po—in Table 1), which suffers in that it in-
cludes agreement which can be accounted for
by chance. Occasionally, the k X k table of
joint categorical assignment frequencies (where
each "judge" has made assignments to the
same &-level nominal scale) has been treated
as a contingency table, and the contingency co-
efficient, C, based on chi-square, X2, (Mc-
Nemar, 1962) has been used as a measure of
agreement. The defect of X2 in this context,
and therefore of C, is that it indexes association
and not necessarily agreement, which is the
special kind of association of interest in re-
liability. In an agreement matrix, high re-
liability dictates that the values observed in
the k cells of the leading or agreement diagonal
be higher than the chance expectation dic-
tated by the marginal values, and that, con-
versely, the off-diagonal cells representing dis-
agreement have observed values which are
smaller than those expected by chance. The X2

and hence C increase monotonically with in-
creases in the absolute discrepancies between
observed and chance-expected values in each
of the cells, whether these discrepancies are in
the direction of agreement or disagreement,
quite impartially.
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Cohen (1960) proposed as a coefficient of
agreement for nominal scales, the proportion
of agreement corrected for chance

used for setting confidence limits and perform-
ing two-sample hypothesis tests, and the
standard error of K when the population K = 0

Po — PC

1 - PC
[1] = -y [3]

where p0 is the observed proportion of agree-
ment, and pc is the proportion of agreement ex-
pected by chance. This is found by summing
over the agreement diagonals, the product of
the proportions for the row and column of the
cell, as illustrated by the parenthetical values
in each cell of Table 1. Cohen also presented
large sample formulae for the standard error of
an observed K

OK — N(\ - [2]

used for one-sample significance tests of K
(1960, Formulas 7 and 10). For large samples,
the sampling distribution of K is approximately
normal, and statistical tests using normal curve
deviates take the familiar classical form
(Cohen, 1960).

Thus, K provides a conceptually simple mea-
sure of reliability for nominal scales: the pro-
portion of agreement after agreement which
can be attributed to chance has been removed
both from the base and from the numerator, as

TABLE 1

AN AGREEMENT MATRIX or PROPORTIONS WITH ILLUSTRATIVE COMPUTATIONS
OP K, KW AND RELEVANT STATISTICS

Judge A

Diagnostic Category

Judge B

ij

Personality disorder

Neurosis

Psychosis

P.i

Personality disorder

G»
(.30) b .44"

1
(.15) .05

3
(.05) .01

.50

Neurosis

1
(.18) .07

0
(.09) .20

6
(.03) .03

.30

Psychosis

3
(.12) .09

6
(.06) .05

0
(.02) .06

.20

Pi.

.60

.30

.10

1.00

Note.—N = 200
«« = 1 - #„ = 1 - (.44 + .20 + .06) = .30
5, = 1 - p, = 1 - (.30 + .09 + .02) = .59

I, = OU4) + 1(.07) +3 (.09) + 1 (.05) + • • • + 0(.06) = .90

0«(.44) + 3*(.09) -f

3.90 - .90'
TOO(1.382)

+ 0!(.06) = 3.UD
+ 0«(.02) = 5.10

.0901

/S.10 - 1.38'
""-o = V 200(1.38lT = ' 916

l>5% Confidence Limits on KU,: KW rt 1.96o-K

[4]

[8]

[10]

[13]

.348 ± 1.96(.0<J01) =

a Disagreement weight »«
h Chance-expected eel! proportion,
' Observed cell proportion, pan
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Formula 1 directly sets forth. It quite reasona-
bly yields negative values when there is less
observed agreement than is expected by
chance, zero when observed agreement can be
(exactly) accounted for by chance, and unity
when there is complete agreement.

The further development to ««, (weighted
kappa) is motivated by studies in which it is
the sense of the investigator that some dis-
agreements in assignments, that is, some off-
diagonal cells in the k X k matrix, are of
greater gravity than others. For example, in an
assessment of the reliability of psychiatric
diagnosis in the categories: (a) personality
disorder (D), (b) neurosis (N), and (c) psy-
chosis (P), a clinician would likely consider a
diagnostic disagreement between neurosis and
psychosis to be more serious than between
neurosis and personality disorder (see Table 1).
The K makes no such distinction, implicitly
treating all disagreement cells equally. This
article describes the development of KW, the
proportion of weighted agreement corrected for
chance, to be used when different kinds of dis-
agreement are to be differentially weighted in
the agreement index.

DEVELOPMENT OF WEIGHTED KAPPA

The desired weighting is accomplished by an
a priori assignment of weights to the W cells of
the k X k matrix, that is, a ratio scaling of the
cells. Either degree of agreement or degree of
disagreement may be scaled, depending on
what seems more natural in the given context.
The development here will be in terms of dis-
agreement ratio scaling, for example, 6 repre-
sents twice as much disagreement as 3. This
will be supplemented later with formulae for
use with agreement scaling. Note that in
either case, the result is KW, a chance-corrected
proportion of weighted agreement.

We begin with the basic formula for K
(Equation 1). If we define q = 1 — p as the
proportion of disagreement, p = 1 — q. Sub-
stituting po = 1 — <?„ and pc = 1 — qc into
Equation 1 and simplifying yields

= 1 [4]

replaces q0 and qc by proportions of weighted
disagreement, q'0 and q'c. To find the latter,
each of the &2 cells must have a disagreement
weight, vu, where the ij subscript indexes the
cell (i,j = ! • • •&) . These (positive) weights
can be assigned by means of any judgment pro-
cedure set up to yield a ratio scale (Torgersen,
1958) including the simple direct scaling advo-
cated by Stevens (1958). In many instances,
they may be the result of a consensus of a com-
mittee of substantive experts, or even, con-
ceivably, the investigator's own judgment.
They are, in any case, to be ratio weights. It
is convenient (but not necessary) to assign
zero to the "perfect" agreement diagonal
(i = j ) , that is, no disagreement. A weight
which represents maximum disagreement
(vmax) is assigned at the convenience of the in-
vestigator (for Table 1, it is 6). For any set
of va, Kw is invariant over any positive multipli-
cative transformation, that is, KTO will not
change if its iiy are multiplied by any value
greater than zero.

The brief attention to the setting of these
weights should not mislead the reader as to
their importance. The weights assigned are
an integral part of how agreement is defined
and therefore how it is measured with KW.
Moreover, its standard error is also a function
of the Vij (or for agreement weighting, the w«),
so that the results of significance tests are also
dependent upon the weights. Another way of
stating this is that the weights are part of any
hypothesis being investigated. An obvious
consequence of this is that the weights, how-
ever determined, must be set prior to the col-
lection of the data.

Proportions of weighted disagreement, ob-
served and chance, are simply weighted func-
tions over the &2 cells of the p0ij and />0y, re-
spectively, namely

/ 2-f ViiPoij p.-,
<? o — „, L5J

an equation for K expressed in terms of ob-
served and chance disagreement. KW simply

where the /><,,•,• is the proportion of the joint
judgments (N in number) observed in the ij
cell, and the pdj the proportion in the cell ex-
pected by chance, as illustrated in Table 1.
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(The summation throughout is over all
cells.) Weighted kappa is then given by

qc
[7]

When Formulas 5 and 6 are substituted in
Formula 7, the vmax term drops out, and it
simplifies to

_ 1 _ 2-JW'«J r-Q-i
Kw l v" „..* .. L°J

Table 1 illustrates the computation of both
K and KW, using unweighted and weighted dis-
agreement proportions, respectively. The
matrix of proportions of joint assignments in
Table 1 is obtained from the usual k X k table
of joint frequencies or paired assignments in
which cell, marginal and total (N) observed
frequencies have been divided by the latter.
To find the pca, the marginal proportions
for the ij cell are multiplied, for example,
for the upper left cell, pcii = pi.p.j = pi.p.i
= (.60) (.50) = .30, given in parentheses in
that cell.

For K, only the pafj and pdj values in the
agreement diagonal (i = j ) are needed, and K
is found from Formula 4 to equal .492, that is,
after chance agreement is excluded, about half
the judgments are in agreement, all disagree-
ments being counted equally.

For KTO, the weighted sums over all cells
(numerators of Formulas 5 and 6) are substi-
tuted in Formula 8.2 For the vtj in Table 1,
K» = .348.

The values of Table 1 were selected in order
to emphasize a point which might otherwise go
unappreciated: like K, KW is fully chance cor-
rected. One might suppose, since the cells are
scaled for degrees of disagreement, that this is
like not giving some cells full disagreement
credit (i.e., the obverse of giving partial
agreement credit), and that therefore KW rela-
tive to K is biased in an upward direction, that
is, it overstates agreement. The premise is
correct, but the consequent is not. The same
weights which generate q'0 also generate q'c',
and KW may well be smaller than K for the same
data, as is the case in Table 1. This will occur

2 When the VH in the diagonal cells are set at zero,
they contribute to neither Equation 5 nor 6, so that in
practice, the summations are actually over only k2 — k
cells.

when the algebraically smaller values of
pdj — poij occur in cells which have large Up-
values. It occurs in Table 1 because the
N - P(2,3) and P - N(3,2) disagreement
cells, which have the largest »,-; = 6 show
peij — pan discrepancies of only .01 and .00,
while the less serious D — N and N — D dis-
agreement cells (iiij = 1) show discrepancies of
.12 and .10. This means that these judges
disagree much less than chance expectation
where it doesn't count very much and disagree
at about the chance level where it counts
greatly. The result is KW smaller than K. If
the Vij's of 6 and 1 are interchanged in the
table, KW becomes .574, a value greater than K.

For a computing formula using frequencies
rather than proportions, one simply substitutes
/ for p values in Formula 8

Ky, = 1 — [9]

where /„,-; is the observed frequency in cell ij,
and fcn is the chance-expected frequency in
cell ij, computed as for a X2 contingency table.

Sampling Characteristics

The asymptotic (large sample approxima-
tion) standard error of KW is

or, in terms of cell frequencies

The use of Formula 10 is illustrated in
Table 1. (Note that it requires, in addition to
the terms required by Formula 8, the determi-
nation of ]T if-ijpoij.) Since the sampling dis-
tribution of KW is approximately normal for
large samples, KW can be used for setting con-
fidence limits on a sample KM together with the
appropriate unit normal curve deviate (illus-
trated in Table 1 for 95% limits, where
z = ± 1.96), and also for a normal curve test
of the significance of the difference between
two independent KWS

z = --l"1-̂ -"*'- [12]
,. / • ) 1 0 i_ _i
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To test an obtained KW for significance, the
standard error of KW when the population KW

equals zero is needed. It is obtained by sub-
stituting chance for observed cell proportions
where the latter appear in Formula 10

nri
L J

the computation of which is illustrated in
Table 1. In terms of frequencies

CTKu V [14]

A significance test of KW, that is, a test of Ho:
Population KW = 0, is accomplished by evalu-
ating the normal curve deviate

[15]

For the data in Table 1, KW = ,348,
= .0901, and

z =
.348
.0916

= 3.80, significant at p < .001.

It should be noted that the demonstration
that a population KW is greater than zero, at
whatever significance level, is, in general,
hardly impressive. The KW here is a reliability
coefficient, and one normally wishes evidence
that the population KW is some relatively large
value, rather than merely that it highly
probably exceeds zero. Thus, in most in-
stances, a substantial value for the lower con-
fidence limit (at, say, 95%) rather than zero
as implied by the null hypothesis, is a more
meaningful criterion for the adequancy of
nominal scale reliability.

Weighted Kappa through Agreement Scaling

The KW can be developed with cell weights
which reflect agreement (wy) rather than dis-
agreement (tin). When the concept of "full"
credit for complete agreement and varying
amounts of "partial" credit (possibly including
no credit) for different off-diagonal (i ̂  f)
cells seems natural in a given context, agree-
ment is scaled so as to yield a ratio scale of
positive agreement weights, wy, ranging down
from some convenient maximum value assigned

to the diagonal (i = /) cells representing com-
plete agreement (full credit).3 The use of zero
as the minimum «>,-/ ("no" credit) is con-
venient, but not necessary. As with the »,•,-,
KW is invariant over multiplication of the wy by
any value greater than zero. The stress on
the importance of the »y when they were dis-
cussed in the preceding section extend, of
course, to the wy.

Parallel to the above development, we define
weighted proportions of observed and chance
agreement

E *>tit

W

[16]

[17]

By replacing weighted for unweighted pro-
portions of agreement in the basic formula for
K (Formula 1), we obtain

P'o - P'c

1-p'c [18]

Substituting the values of Equations 16 and
17 and simplifying yields

_ E Wijpoij - E Wijpcij
KW — ^i

Wmax — 2-

In terms of frequencies

E Wiifoi, - E

Also
— E

^=V ; oH - (E

and, in terms of frequencies

^N(wmaxN -

n(n

L-'-'J

[20]

[21]

[22]

Finally, <TKMO is given, for proportions and
frequencies, respectively, by replacing ob-
served by chance values wherever the former
appear in Formulas 21 and 22.

3 Because of the ratio property of both the v/y and
vn, the relationship between the two kinds of weights
is complementary when they are expressed as propor-
tions of their respective maximum values. Specifically,
KW remains constant when (wa/wmax) = 1 — (vy/Vmaz)
Which yields •VH, = (iVnuut/Vmax) (Vmax — *v).
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Statistical manipulations, such as setting
confidence limits and performing the signifi-
cance tests of Formulas 12 and 15 are, of
course, performed in exactly the same way as
when their components were found through
disagreement weights.

WEIGHTED KAPPA AND KAPPA

A perspective on KW is afforded by consider-
ing its relationship to K. The K is simply pro-
portion of agreement (/>„) corrected for chance,
and KW can readily be thought of as a general-
ization of K, proportion of weighted agreement
(as in Formula 16) corrected for chance. The
relationship may be more clearly understood
if it is inverted: K is a special case of KW. In KW

we may differentially weight, either by »<;- or
Wij, the off-diagonal (i ̂  j) cells, because we
mean to consider the various kinds of disagree-
ment as representing differing amounts of dis-
agreement (or, equivalently, differing amounts
of agreement). For K, the k (k — 1) off-diagonal
cells representing disagreement are simply
treated as if they all represented the same
amount of disagreement. It is a matter of
simple algebra to show that if all vy(i ^ j) are
given the same weight, unity or any other
value greater than the agreement diagonal
weights (= 0 in the example), K«, becomes K.
That is, with »,-,• (i — j) = 0 and all »y (i ̂  j)
= a constant, the constant cancels out in
Formula 8 for KW, leaving K of Formula 4.
Similarly, a constant value for w,v (i -^ j),
smaller than another constant WH (i = j)
= Wmax, reduces Formula 19 for KV to For-
mula 1 for K. Thus, K is the special case of KW

where all disagreements are given the same
weight. Furthermore, under these conditions,
the standard error formulas for KW simplify to
those for K (Formulas 2 and 3).

WEIGHTED KAPPA AND PRODUCT-
MOMENT CORRELATION

It is a frequent experience for the methodolo-
gist exploring an area apparently remote from
product-moment correlation (r) to turn a
corner and find it confronting him (for a recent
example see Glass, 1966). A discovery of this
kind may be of greater importance in its illu-
mination of r than of the area being explored.
Such a discovery was made in the case of KW.

Under certain simple conditions, KW = r. The
conditions are these: (a) The marginal distri-
butions are the same, that is, pi. = p,j for i = j.
(b) Disagreement weights (»#) are assigned
according to the following pattern: The k cells
of the agreement diagonal (i = J) have
tty = 0. The k — 1 cells in each of the two ad-
jacent diagonals have »,-y of 1, the k — 2 cells
in each of the next diagonals out on either side
have vfj = 22 = 4, the k — 3 cells in each of
the next diagonals have »,•/ = 32 = 9, and so
on until one reaches the last cell in the upper
right and lower left corner whose weights are
(k — I)2. For example, for k = 5, the pattern
of vn is

0 1 4 9 16
1 0 1 4 9
4 1 0 1 4
9 4 1 0 1

16 9 4 1 0

Using these weights, one can compute KW

with Formulas 8 or 9.
Now, give the nominal categories scores equal

to their index numbers, that is, the first cate-
gory is scored 1, the second is scored 2, etc. If
the product-moment r is computed from the ob-
served frequencies or proportions using these
scores (or linear transformations thereof), r is
found identical to the KW above.4

This identity did not come as a complete
surprise. In the article presenting K (Cohen,
1960), it was shown that for the 2 X 2 table
under the equal marginal condition, K — <j>, the
fourfold point correlation coefficient (phi co-
efficient). For the 2 X 2 table with symmetri-
cal assignment of weights (»«= vz\, or
wiz = W«I)KW perforce equals K. On the other
hand, <> is simply a product-moment r for di-
chotomous data. Thus, the previous finding
of K = <j> is a special case of the present more
general finding that KW = r under the stated
conditions.

4 The proof proceeds by writing the "difference" for-
mula for r, then letting the means and standard devia-
tions of the two distributions be equal (as in Cohen,
1957, Formula 5), the latter being a consequence of the
first condition. In this form, the formula for r has the
same structure as that of KW (Formulas 8 and 9). If one
then notes that the »y of the required pattern are, in
fact, equal to /V = (x< ~ Yi^ for V = M' • •*, one
can see how the proof proceeds.
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Note that the two conditions, equal margi-
nals and the prescribed pattern of weights, are
not of equal importance. Relaxation of the first
to the degree of inequality of marginals nor-
mally found in real data reduces the equality
of KW and r to a close approximation, with
KW < r, but by no more than a few hundredths.

The equality of «„ and r under the stated
conditions is primarily of interest for the new
conception it offers for r. It means that r can
be conceived as a (suitably chance-corrected)
proportion of agreement, where the disagree-
ments are weighted so as to be proportional to
the square of the distance between the pair of
measures, or, equivalently, from the X = Y
line. (In the general case, where X and 7 are
not expressed in the same units, they must be
conceived as first being transformed to a
common standard score.) Perhaps this should
not be surprising, given the role of least squares
in the definition of r. The tendency of statisti-
cal neophytes to interpret r as a proportion
may be more constructively dealt with peda-
gogically by showing them by this route (there
are others) exactly what kind of a proportion
it is.

WEIGHTED KAPPA AS A VALIDITY
MEASURE

The examples and discussion to this point
have implicitly assigned equal weights to sym-
metric cells, that is, tiy = «y,- (or WH = Wji).
An error which comes about from Judge A
assigning "Neurotic" where Judge B assigns
"Psychotic" is of the same gravity, or gets the
same partial credit as one in which their as-
signments are reversed. This is appropriate to
the frame of reference of reliability, where the
two sources of data are conceived as being of
equal status, that is, as alternate forms. Some
reflection suggests that the formal difference
between reliability and validity lies in the con-
trast between the equal status of the sources
in the former and their differing status in
validity, where one is a predictor and the other
a criterion. When validity is being assessed, it
may (but need not) be eminently reasonable
for vy 7* 11 n (or wu 7* Wji). It is this conception
which is operative in the different costs at-
tached to false positives and false negatives in
dichotomous diagnosis, and in the different

values given producer's risk and consumer's
risk in statistical quality control. Since there
is nothing in the conception or statistical
manipulation of KW which demands weight
symmetry, it can be used for k X k tables con-
structed for assessing nominal (and indeed,
stronger than merely nominal) scale validity.

For example, reinterpret the situation in
Table 1 as follows: Consider Judge A to be the
consensus diagnosis of a panel of distinguished
diagnosticians—the criterion; and Judge B the
diagnosis made by a computer—the predictor,
or variable being tested (Spitzer et al., 1967).
Given the way the computer diagnosis is to be
used, it may well be considered, for example,
that a computer error in making a diagnosis of
Neurosis when the panel consensus is Psychosis
is more serious than a computer diagnosis of
Psychosis when the panel consensus is Neu-
rosis. This is realized in the definition of agree-
ment by assigning different weights to these
symmetrical cells. For this use of KW, the
pattern of »y which are finally assigned may
look like this:

Panel
D N P

D 0 1 4
Computer N 1 0 6

P 2 2 0

Such a pattern implies a greater concern about
failing to identify psychotics (more so by
calling them neurotics) than for mistakenly
identifying them, and less (and symmetrical)
concern for the Neurosis-Personality Disorder
confusion, whichever way the error is made.

Assuming the proportions of Table 1 with
these new weights, it is found that ^ vypoa
— -86, JZ Vijpdi= 1-33, and therefore
KW = .353 (Formula 8). With these new
weights, fftn = .0887 (Formula 10) and
craw, = .0915 (Formula 13). The KV remains the
chance-corrected proportion of weighted agree-
ment, but now the weights reflect the "costs"
or "utilities" perceived in this situation and
their structure is appropriate to what is in-
tended by the "validity" of computer diagnosis.
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