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Weighted kappa coefficients are commonly used to quantify
inter- or intra-rater reliability or test-retest reliability of ordinal
ratings in clinical and epidemiologic applications. In this pa-
per, we assess the dependence of weighted kappa coefficients
on the number of categories and the type of weighting scheme,
which vary between applications. The most commonly used
weights are weights that are proportional to the deviation of
individual ratings (“linear weights”) or to the square of the
deviation of individual ratings (“quadratic weights”). Quadrati-
cally weighted kappa coefficients are equivalent to the intra-
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class correlation coefficient and to the product-moment cot-
relation coefficient under certain conditions. We illustrate that
an increase of quadratically weighted kappa coefficients with
the number of categories is expected under a broad variety of
conditions, whereas linearly weighted kappa coefficients ap-
pear to be less sensitive to the number of categories. Number
of categories and type of weighting scheme therefore require
careful consideration in the interpretation of weighted kappa
coefficients. (Epidemiology 1996;7:199-202)

Kappa coefficients are commonly employed to quantify
the level of agreement between multiple ratings of cat-
egorical variables.! Most applications pertain to dual
ratings, but extensions to more than two ratings have
also been developed.? Kappa coefficients may be used for
both dichotomous characteristics, such as presence or
absence of disease, and polytomous characteristics. The
latter are often ordinally scaled in clinical and epidemi-
ologic applications, such as classifications of the severity
of symptoms or disease, or classifications of the fre-
quency, magnitude, or duration of exposure. The num-
ber of categories used in various classification schemes
varies, but it is in the range from two (the minimum
possible value) to five in most practical applications.
With ordinal categories, weighted kappa coefficients
are often used in which disagreements are weighted by
the magnitude of the discrepancy.? Weighted kappa co-
efficients may be equivalently expressed using weights of
agreement rather than disagreement. The most com-
monly used weights are weights that are proportional to
the deviation of individual ratings (“linear weights"),
such as the numbers of categories of disagreement, and
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weights that are proportional to the square of the devi-
ation of individual ratings (“quadratic weights”), such as
the squared numbers of categories of disagreement. Qua-
dratic weights are often recommended since quadrati-
cally weighted kappa coefficients are equivalent to the
product-moment correlation and the intraclass correla-
tion coefficient under certain conditions.>*

A kappa coefficient of 1.0 indicates maximum possi-
ble agreement, whereas a kappa coefficient of 0 indicates
lack of agreement beyond agreement by chance alone
(negative kappa coefficients may also occur in the case
of less than chance agreement). Interpretation of the
intermediate values of kappa coefficients that are typi-
cally encountered in practice is less clear. Several au-
thors have delineated ranges of values of kappa coeffi-
cients pertaining to excellent, moderate, and poor
agreement.”” Such classifications are problematic, how-
ever, since values of kappa coefficients also depend on
factors other than reliability, such as the marginal dis-
tributions of the ratings.8-15

Another factor that has to be considered in the in-
terpretation of kappa coefficients is the number of cat-
egories. Unweighted kappa coefficients decrease with
the number of categories. Although this characteristic is
an obvious consequence of the fact that unweighted
kappa coefficients are measures of exact agreement, it
has often been overlooked in the past.'® A much less
clear issue that has received comparatively little atten-
tion is the question of how values of weighted kappa
coefficients are affected by the number of categories.

In this paper, we present an investigation of the
impact of the number of categories on the value of
linearly and quadratically weighted kappa coefficients.
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Methods

We assumed that the classification is made on an ordinal
scale on the basis of explicit measurement or subjective
perception of some underlying continuous trait. This
assumption applies to many classifications in clinical
and epidemiologic studies. Common examples include
classification of severity of disease or of levels of expo-
sure. Lack of reliability of classification is assumed to be
due to random measurement or perception error of the
underlying trait.

We first addressed the situation in which the trait that
underlies categorization is normally distributed with
mean X* and standard deviation o in the population. X*
may reflect laboratory parameters, severity of symptoms,
or other quantitative parameters of clinical or epidemi-
ologic relevance (or some mathematical function of
them, such as the natural logarithm). To simplify nota-
tion, we assumed that X* is transformed into a variable
X that follows the standard normal distribution with
p = 0and ¢ = 1. Now, let Z, and Z, be approximate
measurements or perceptions of X with Z, = X + ¢, and
Z, = X + e, where ¢, and e, are additive measurement
or perception errors (in the case of intra-rater reliability
studies or test-retest studies, e, and e, may also reflect
intraindividual variability of the underlying trait). We
assumed that ¢, and e, are independent of the true trait
X and of each other, and that ¢, and e, each follow a
normal distribution with mean 0 and standard deviation
o.. Then, the combined measurements or perceptions Z,
and Z, follow a bivariate normal distribution with mean
0 and variance ¢ + a7 for each component and corre-
lation coefficient p = o*/(c~ + o7).

We considered two types of classification schemes: (1)
classification by quantiles of perceived levels of the
underlying trait, and (2) classification by a priori defined
cutpoints. Fixed cutpoints were arbitrarily determined
using the following algorithm: ¢, = —2 + 4 X i/k, where
k denotes the total number of categories and ¢, denotes
the cutpoint between the ith and the (i + 1)th category
(1 =i= (k- 1)]. With this algorithm, cutpoints are
equally spaced in the range from —2 to +2, which
covers more than 95% of true values of the underlying
trait X. With both classification schemes, we varied the
number of categories between 2 and 8, and we varied the
standard deviation of the measurement or perception
error 0, between 0.25, 0.50, 1.00, and 2.00 to reflect a
broad range of classification accuracy. The categories
were numbered in ascending order, and we employed
both linearly and guadratically weighted kappa coeffi-
cients on the categorical ratings (using as weights the
numbers of categories of disagreement between both
ratings and the squared numbers of categories of dis-
agreement, respectively).

Derivation of expected weighted kappa coefficients
for the scenarios assuming normal distribution of the
underlying trait is outlined in Appendix 1.

Although the underlying trait and the measurement
or perception error can often be assumed to be approx-
imately normally distributed, other distributional forms
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are also of interest. In particular, skewed distributions of
the underlying traits and variation of measurement or
perception error according to the true value are com-
mon. We therefore carried out addirional analyses in
which we assumed the underlying trait X to follow the
exponential distribution with mean 1, and in which we
assumed that the measurement or perception error of the
natural logarithm of X follows the normal distribution
with mean O and standard deviation o,. These assump-
tions reflect situations in which the distribution of the
underlying trait is strongly skewed to the right (with a
lower limit of 0) and in which measurement or percep-
tion error increases with the absolute true levels of the
trait.

Again, we considered classifications by quantiles and
by fixed cutpoints. The latter were determined using the
following algorithm: ¢, = 3 X ifk, where k denotes the
total number of categories and ¢, denotes the cutpoint
between the ith and the (i + 1)th category [1 =i =
(k = 1)]. This algorithm produces equally spaced cut-
points in the range from 0 to +3 (which covers more
than 95% of true values of the underlying trait). As
before, we varied the number of categories between 2
and 8, and we varied o, between 0.25 and 2.0.

All calculations were made by numerical integration
with the software package SAS using the cumulative
distribution function PROBNORM of the standard nor-
mal distribution.!”

Numerical Illustration

Figure 1 shows the expected kappa coefficients for the
scenarios assuming normal distribution of the underlying
trait and classification of individuals by quantiles of
observed values. The four graphs pertain to four levels of
measurement or perception error (o, = 0.25, 0.50, 1.00,
and 2.00). In each graph, expected linearly weighted
kappa coefficients (black bars) and quadratically
weighted kappa coefficients (hatched bars) are depicted
for increasing numbers of categories up to a maximum of
eight.

As expected, kappa coefficients are in the range of 0
to 1 and decrease with the standard deviation of mea-
surement or perception error. Whereas coefficients are
around 0.80 for g, = 0.25 (upper left graph), coefficients
are below 0.20 for ¢, = 2.00 (lower right graph). Kappa
coefticients are generally somewhat lower than the cor-
relation coefficient of the bivariate normal distribution
of the pairs of observation of the continuous trait
(2,,2,), which is given as 1/(1 + o%) and depicted as a
horizontal line in the graphs. If there are only two cate-
gories, weighting is obviously without influence on the
kappa coefficient. The kappa coefficient tends to de-
crease slightly with the number of categories if linear
weights are used. In contrast, a more pronounced in-
crease of kappa coefficients is expected with increasing
numbers of categories if quadratic weights are used. In
that case, the kappa coefficients are close to the corre-
lation coefficient for the underlying continuous trait if
there are five or more categaries. Resnlts for rhe scenar-



Epidemiology March 1996, Volume 7 Number 2

7,=0.25 7,=0.50
N NN § §
08 \ § \ \ \ N 0.8}
0.6 . \ \ \ \ | \ 0.6 Q .
it -l
0.4 \ § \ \ § § \ 0.4
i
0.2- \ \ § \ \ 0.2 N
Lt \
0,=1.00 0,=2.00
§ 0.2 A—_ - 5 “ 1
FIGURE 1. Expected kappa coefficients for the scenarios

assuming normal distribution of the underlying trait and
classification of individuals by quantiles of observed values.
Black bars = linearly weighted kappa coefficients; hatched
bars = quadratically weighted kappa coefficients; horizontal
line = correlation coefficient of the continuous trait.

ios assuming normal distribution of the underlying trait
and classification of individuals by fixed cutpoints were
essentially equivalent and are therefore not illustrated
separately.

Results for the scenarios assuming exponential distri-
bution of the underlying trait and classification of indi-
viduals by quantiles of cbserved values are shown in
Figure 2. Although overall levels of kappa were higher in
these scenarios, the dependence of kappa coefficients on
the number of categories was very similar to the corre-
sponding scenarios assuming normal distribution of the
underlying trait (Figure 1). We also found an increase of
quadratically weighted kappa coefficients with the num-
ber of categories in the scenarios assuming exponential
distribution of the underlying trait and classification of
individuals by fixed cutpoints. In these scenarios (which
are not illustrated separately to save space), expected
linearly weighted kappa coefficients were also increasing
with the number of categories, but the increase was
much less pronounced than the increase of quadratically
weighted coefficients.

Discussion
The dependence of kappa coefficients on the weighting

scheme has heen emphasized-previously.!®!® This paper

WEIGHTED KAPPA COEFFICIENTS 201

7,=0.50

kappa
‘kappa 1 app

2 3 4 5 6 7
number of categories

0,=1.00 0,=2.00
kappa kappa

0.8 0.8f

0.6

0.4}

0
2 3 4 5 6 7 8

3
n number of categories

umber of categories

FIGURE 2. Expected kappa coefficients for the scenarios
assuming exponential distribution of the underlying trait and
classification of individuals by quantiles of observed values.
Black bars = linearly weighted kappa coefficients; hatched
bars = quadratically weighted kappa coefficients.

demonstrates that the number of categories is an addi-
tional determinant of the magnitude of weighted kappa
coefficients. Our findings indicate that quadratically
weighted kappa coefficients tend to increase with the
number of categories in many instances. This result
contrasts with findings for unweighted kappa coeffi-
cients, which decrease with the number of categories.!®
Variation of the quadratically weighted kappa coeffi-
cient with the number of categories appears to be stron-
gest in the range from two to five categories, the range of
categories that is most frequently used in practical ap-
plications. In contrast, linearly weighted kappa coeffi-
cients tend to be less affected by the number of catego-
ries and might therefore eventually be preferred in
special situations in which the focus is on comparing
reliability between items with different numbers of cat-
egories. Nevertheless, the increase of quadratically
weighted kappa coefficients with the number of catego-
ries can also be considered to be a desirable property,
since, after all, as the number of categories increases, so
does the proportion of the variability in the true variable
captured by the imperfect ordinal variable.

In the interpretation of kappa coefficients, a variety of
factors other than weighting scheme and number of
categories have to be taken into account. The impor-
tance of the marginal distributions of ratings on the
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values of kappa coefficients has previously been ad-
dressed by several authors.®~'* In particular, the impor-
tance of imbalance and asymmetry of marginal ratings
has been emphasized. Feinstein and Cicchetti!? coined
the terms balanced marginals and symmetry in the con-
text of dual binary classifications for ratings with equal
proportions of positive and negative classifications, and
for situations with identical distributions of marginals in
both ratings, respectively. Marginal distributions are
symmetrical in all scenarios assessed in this paper, which
enables one to assess the impact of the number of cate-
gories independent of the influence of asymmetry. In
contrast to the scenarios assuming classification of indi-
viduals by quantiles of observed values, marginal distri-
butions are strongly imbalanced in the scenarios assum-
ing fixed cutpoints. The striking similarities of results for
the very different assumptions with respect to the distri-
bution of the underlying trait, to the distribution of
measurement Or perception error, and to the balance of
marginal classifications indicate that the observed pat-
terns might apply to a broad variety of conditions.
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Appendix 1

Let f(.) denote the density function, and let g(.) denote the
cumulative distribution function of the standard normal dis-
tribution. Let k be the total number of categories, and let ¢,
denote the cutpoint between the ith and the (i + 1)th category
for 1 =i = (k — 1). Then, the probability that an individual
with true underlying trait x is classified into category i in a
single rating, denoted p,, equals:

(C'_x) for i=1
g . or i=1,

(C‘—x) (C”‘—X) for 2=i=(k—1
) el ) or 2=i=( )

6 —x
1—g< ) for i=k,

a,

e

assuming normal distribution of measurement error with mean
0 and standard deviation o, Let p, denote the praportion of
individuals classified in categories i and j in the first and second
rating, respectively. This proportion is given as:

by =f [f(x) X p,(x} X pi(x)]dx,

assuming standard normal distribution of the true underlying
trait and independence of both ratings conditional on the true
value. Expected values of the kappa coefficients can be calcu-
lated from the p, (1 =i <k, 1 < j =< k) using standard
equations.®



