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Reliable and accurate measurements serve as the basis for evaluation in many scientific
disciplines. Issues related to reliable and accurate measurement have evolved over many
decades, dating back to the nineteenth century and the pioneering work of Galton
(1886), Pearson (1896, 1899, 1901), and Fisher (1925). Requiring a new measurement
to be identical to the truth is often impractical, either because (1) we are willing
to accept a measurement up to some tolerable (or acceptable) error, or (2) the
truth is simply not available to us, either because it is not measurable or is only
measurable with some degree of error. To deal with issues related to both (1) and
(2), a number of concepts, methods, and theories have been developed in various
disciplines. Some of these concepts have been used across disciplines, while others have
been limited to a particular field but may have potential uses in other disciplines. In this
paper, we elucidate and contrast fundamental concepts employed in different disciplines
and unite these concepts into one common theme: assessing closeness (agreement)
of observations. We focus on assessing agreement with continuous measurements and
classify different statistical approaches as (1) descriptive tools; (2) unscaled summary
indices based on absolute differences of measurements; and (3) scaled summary indices
attaining values between –1 and 1 for various data structures, and for cases with and
without a reference. We also identify gaps that require further research and discuss
future directions in assessing agreement.

Key Words: Accuracy; Agreement; Coefficient of individual agreement; Concordance correlation
coefficient; Coverage probability; Generalizability; Intraclass correlation coefficient; Limits of
agreement; Method comparison; Precision; Reliability; Repeatability; Reproducibility; Tolerance
interval; Total deviation index; Validity.

Received February 8, 2007; Accepted March 8, 2007
Address correspondence to Huiman X. Barnhart, Department of Biostatistics and Bioinformatics

and Duke Clinical Research Institute, Duke University, PO Box 17969, Durham, NC 27715, USA;
E-mail: huiman.barnhart@duke.edu

529



530 BARNHART ET AL.

1. INTRODUCTION

In social, behavioral, physical, biological, and medical sciences, reliable and
accurate measurements serve as the basis for evaluation. As new concepts, theories,
and technologies continue to develop, new scales, methods, tests, assays, devices, and
instruments for evaluation become available for measurement. Because errors are
inherent in every measurement procedure, one must ensure that the measurement
is reliable and accurate before it is used in practice. The issues related to reliable
and accurate measurement have evolved over many decades, dating back to the
nineteenth century and the pioneering work of Galton (1886), Pearson (1896,
1899, 1901), and Fisher (1925): from the intraclass correlation coefficient (ICC)
that measures reliability (Bartko, 1966; Fisher, 1925; Galton, 1886; Pearson, 1896;
Shrout and Fleiss, 1979; Vangeneugden et al., 2004) and the design of reliability
studies (Donner, 1998; Dunn, 2002; Shoukri et al., 2004), to generalizability
extending the concept of ICC (Brennan, 2001; Cronback, 1951; Cronbach et al.,
1972; Lord and Novick, 1968; Vangeneugden et al., 2005); from the International
Organization for Standardizations (ISO) (1994) guiding principle on accuracy of
measurement (ISO 5725-1) to the Food and Drug Administrations (FDA) (2001)
guidelines on bioanalytical method validation; and including various indices to
assess the closeness (agreement) of observations (Bland and Altman, 1986, 1995,
1999; Barnhart et al., 2002, 2005a; Carrasco and Jover, 2003a; Choudhary and
Nagaraja, 2004; Dunn, 2004; Haber and Barnhart, 2006; King and Chinchilli, 2001a;
Lin, 1989, 2000a, 2003; Lin et al., 2002; Shrout, 1998).

In the simplest intuitive terms, reliable and accurate measurement may simply
mean that the new measurement is the same as the truth or agrees with the
truth. However, requiring the new measurement to be identical to the truth is
often impractical, either because (1) we are willing to accept a measurement up to
some tolerable (or acceptable) error or (2) the truth is simply not available to us
(either because it is not measurable or because it is only measurable with some
degree of error). To deal with issues related to both (1) and (2), a number of
concepts, methods, and theories have been developed in different disciplines. For
continuous measurement, the related concepts are accuracy, precision, repeatability,
reproducibility, validity, reliability, generalizability, agreement, etc. Some of these
concepts (e.g., reliability) have been used across different disciplines. However, other
concepts, such as generalizability and agreement, have been limited to a particular
field but may have potential uses in other disciplines.

In this paper, we describe and contrast the fundamental concepts used in
different disciplines and unite these concepts into one common theme: assessing
closeness (agreement) of observations. We focus on continuous measurements and
summarize methodological approaches for expressing these concepts and methods
mathematically, and discuss the data structures for which they are to be used, both
for cases with and without a reference (or truth). Existing approaches for expressing
agreement are organized in terms of the following: (1) descriptive tools, such as
pairwise plots with a 45-degree line and Bland and Altman plots (Bland and Altman,
1986); (2) unscaled summary indices based on absolute differences of measurements,
such as mean squared deviation including repeatability coefficient and repro-
ducibility coefficient, limits of agreement (Bland and Altman, 1999), coverage
probability, and total deviation index (Lin et al., 2002); and (3) scaled summary
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indices attaining values between −1 and 1, such as the intraclass correlation
coefficient, concordance correlation coefficient, coefficient of individual agreement,
and dependability coefficient.

These approaches were developed for one or more types of the following data
structure: (1) two or more observers without replications; (2) two or more observers
with replications; (3) one or more observer is treated as a random or fixed reference;
(4) longitudinal data where observers take measurements over time; (5) data where
covariates are available for assessing the impact of various factors on agreement
measures. We discuss the interpretation of the magnitude of the agreement values
on using the measurements in clinical practice. We also identify gaps that require
further research, and discuss future directions in assessing agreement. In Section 2,
we present definitions of different concepts used in the literature and provide our
critique. Statistical approaches are presented in Section 3 where various concepts are
used. We conclude with a summary and discussions of future directions in Section 4.

2. CONCEPTS

2.1. Accuracy and Precision

In Merriam Webster’s dictionary, accuracy and precision are synonyms.
Accuracy is defined as “freedom from mistake or error” or “conformity to truth
or to a standard” or “degree of conformity of a measure to a standard or a true
value.” Precision is defined as “the quality of being exactly or sharply defined”
or “the degree of refinement with which a measurement is stated.” The “degree
of conformity” and “degree of refinement” may mean the same thing. The subtle
difference between these two terms may lie in whether a truth or a reference
standard is required or not.

2.1.1. Accuracy. Historically, accuracy has been used to measure systematic
bias while precision has been used to measure random error around the expected
value. Confusion regarding the use of these two terms continues today because
of the existence of different definitions and because of the fact that these two
terms are sometimes used interchangeably. For example, the US Food and Drug
Administration (FDA) guidelines on bioanalytical method validation (1999) defined
accuracy as the closeness of mean test results obtained by the method to the true
value (concentration) of the analyte. The deviation of the mean from the true
value, i.e., systematic bias, serves as the measure of accuracy. However, in 1994,
the International Organization for Standardization (ISO) used accuracy to measure
both systematic bias (trueness) and random error. In ISO 5725 (1994), the general
term accuracy was used to refer to both trueness and precision, where “trueness”
refers to the closeness of agreement between the arithmetic mean of a large number
of test results and the true or accepted reference value, and “precision” refers to the
closeness of agreement between test results. In other words, accuracy involves both
systematic bias and random error, because “trueness” measures systematic bias. The
ISO 5725 (1994) acknowledged that:

“The term accuracy was at one time used to cover only the one component now
named trueness, but it became clear that to many persons it should imply the total
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displacement of a result from a reference value, due to random as well as systematic
effects. The term bias has been in use for statistical matters for a very long time, but
because it caused certain philosophical objections among members of some professions
(such as medical and legal practioners), the positive aspect has been emphasized by the
invention of the term “trueness””.

Despite the ISO’s effort to use one term (accuracy) to measure both systematic
and random errors, the use of accuracy for measuring the systematic bias, and
precision for measuring random error, is commonly encountered in the literature of
medical and statistical research. For this reason, we will use accuracy to stand for
systematic bias in this paper, where one has a “true sense of accuracy” (systematic
shift from truth) if there is a reference, and a “loose sense of accuracy” (systematic
shift from each other) if no reference is used for comparison. Thus, the “true sense of
accuracy” used in this paper corresponds to the FDA’s accuracy definition and the
ISO’s trueness definition. Ideally and intuitively, the accepted reference value should
be the true value, because one can imagine that the true value has always existed,
and the true value should be used to judge whether there is an error. However,
in social and behavioral sciences, the true value may be an abstract concept, such
as intelligence, which may only exist in theory and may thus not be amenable to
direct measurement. In biomedical sciences, the true value may be measured with a
so-called gold standard that may also contain small amount of systematic and/or
random error. Therefore, it is very important to report the accepted reference,
whether it is the truth or subject to error (including the degree of systematic and
random error if known). In this paper, we only consider the case where the reference
or gold standard is measured with error.

2.1.2. Precision. The FDA (1999) defined precision as the closeness of
agreement (degree of scatter) between a series of measurements obtained from
multiple sampling of the same homogeneous sample under the prescribed
conditions. Precision is further subdivided into within-run, intra-batch precision or
repeatability (which assesses precision during a single analytical run) and between-
run, inter-batch precision or repeatability (which measures precision over time, and
may involve different analysts, equipment, reagents, and laboratories).

ISO 5725 (1994) defined precision as the closeness of agreement between
independent test results obtained under stipulated conditions. ISO defined
repeatability and reproducibility as precision under the repeatability and
reproducibility conditions, respectively (see Section 2.2).

The key phrase is “under the prescribed conditions” or “under stipulated
conditions.” It is therefore important to emphasize the conditions used when
reporting precision. Precisions are only comparable under the same conditions.

2.2. Repeatability and Reproducibility

Repeatability and reproducibility are two special kinds of precision under
two extreme conditions and they should not be used interchangeably. As defined
below, repeatability assesses pure random error due to “true” replications and
reproducibility assesses closeness between observations made under condition other
than pure replication, e.g., by different labs or observers. If precision is expressed
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by imprecision such as standard deviation, repeatability is always smaller than or
equal to reproducibility (see below for definition).

2.2.1. Repeatability. The FDA (2001) used the term repeatability for both
intra-batch precision and inter-batch precision. The ISO defined repeatability as
the closeness of agreement between independent test results under repeatability
conditions that are as constant as possible, where independent test results are
obtained with the same methods, on identical test items, in the same laboratory,
performed by the same operator, using the same equipment, within short intervals
of time.

We use the ISO’s definition of repeatability in this paper. To define the term
more broadly, repeatability is the closeness of agreement between measures under
the same condition, where “same condition” means that nothing changed other than
the times of the measurements. The measurements taken under the same condition
can be viewed as true replicates.

Sometimes the subject does not change over time, as in the case of x-ray
slides or blood samples. However, in practice, it may be difficult to maintain the
same condition over time when measurements are taken. This is especially true
in the social and behavioral sciences, where characteristics or constructs change
over time due to learning effects. It is important to ensure that human observers
are blinded to earlier measurements of the same quantity. We frequently rely on
believable assumptions that the same condition is maintained over a short period of
time when measurements are taken. It is essential to state what assumptions are used
when reporting repeatability. For example, when an observer uses an instrument to
measure a subject’s blood pressure, the same condition means the same observer
using the same instrument to measure the same subject’s blood pressure, where the
subject’s blood pressure did not change over the course of multiple measurements.
It is unlikely that the subject’s blood pressure remains constant over time; however,
it is believable that the true blood pressure did not change over a short period time,
e.g., a few seconds. Therefore, blood pressures taken in successive seconds by the
same observers, using the same instrument on the same subject, may be considered
true replicates.

It is important to report repeatability when assessing measurement, because it
measures the purest random error that is not influenced by any other factors. If true
replicates cannot be obtained, then we have a loose sense of repeatability based on
assumptions.

2.2.2. Reproducibility. In 2001, FDA guidelines defined reproducibility as
the precision between two laboratories. Reproducibility also represents the precision
of the method under the same operating conditions over a short period of time.
In 1994, the ISO defined reproducibility as the closeness of agreement between
independent test results under reproducibility conditions under which results are
obtained with the same method on identical test items, but in different laboratories
with different operators and using different equipment.

We use the ISO’s definition of reproducibility in this paper. To define the term
more broadly, reproducibility is the closeness of agreement between measures under
all possible conditions on identical subjects for which measurements are taken.
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All possible conditions means any conceivable situation for which a measurement
will be taken in practice, including different laboratories, different observers, etc.
However, if multiple measurements on the same subject cannot be taken at the
same time, one must ensure that the thing being measured (e.g, a subject’s blood
pressure) does not change over time when measurements are taken in order to assess
reproducibility.

2.3. Validity and Reliability

The concepts of accuracy and precision originated in the physical sciences,
where direct measurements are possible. The similar concepts of validity and
reliability are used in the social sciences, where a reference is required for validity
but not necessarily required for reliability. As elaborated below, validity is similar
to true sense of agreement with both good true sense of accuracy and precision.
Reliability is similar to loose sense of agreement with both good loose sense of
accuracy and precision. Historically, validity and reliability have been assessed via
scaled indices.

2.3.1. Validity. In social, educational, and psychological testing, validity
refers to the degree to which evidence and theory support the interpretation of
measurement (AERA et al., 1999). Depending on the selection of the accepted
reference (criterion or gold standard), there are several types of validity such as
content, construct, criterion validity (AERA et al., 1999; Goodwin, 1997; Hand,
2004; Kraemer et al., 2002; Molenberghs et al., 2007). Content validity is defined
as the extent to which the measurement method assesses all the important content.
Face validity is similar to content validity, and is defined as the extent to which
the measurement method assesses the desired content at face. Face validity may
be determined by the judgment of experts in the field. Construct validity is used
when attempting to measure a hypothetical construct that may not be readily
observed, such as anxiety. Convergent and discriminant validity may be used to
assess construct validity by showing that the new measurement is correlated with
other measurements of the same construct and that the proposed measurement is
not correlated with the unrelated construct, respectively. Criterion validity is further
divided into concurrent and predictive validity, where criterion validity deals with
correlation of the new measurement with a criterion measurement (such as a gold
standard) and predictive validity deals with the correlation of the new measurement
with a future criterion, such as a clinical endpoint.

Validity is historically assessed by the correlation coefficient between the new
measure and the reference (or construct). If there is no systematic shift of the new
measurement from the reference or construct, this correlation may be expressed
as the proportion of the observed variance that reflects variance in the construct
that the instrument or method was intended to measure (Kraemer et al., 2002).
For validation of bioanalytical methods, the FDA (2001) provided guidelines on
full validation that involve parameters such as (1) accuracy, (2) precision, (3)
selectivity, (4) sensitivity, (5) reproducibility, and (6) stability, when a reference is
available. The parameters related to selectivity, sensitivity, and stability may only
be applicable in bioanalytical method. When the type of validity is concerned with
the closeness (agreement) of the new measurement and the reference, we believe
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that an agreement index is better suited than the correlation coefficient for assessing
validity. Therefore, a statistical approach for assessing agreement for the case with a
reference in Section 3 can be used for assessing validity. Other validity measures that
are based on a specific theoretical framework and are not concerned with closeness
of observations will not be discussed in Section 3.

2.3.2. Reliability. The concept of reliability has evolved over several
decades. It was initially developed in social, behavioral, educational, and
psychological disciplines, and was later widely used in the physical, biological, and
medical sciences (Bartko, 1966; Donner, 1998; Fisher, 1925; Lord and Novick,
1968; Müller and Büttner, 1994; McGraw and Wong, 1996; Shrout and Fleiss,
1979; Shrout, 1998; Shoukri et al., 2004; Vangeneugden et al., 2004). Rather
than reviewing the entire body of literature, we provide our point of view on its
development. Reliability was originally defined as the ratio of true score variance to
the observed total score variance in classical test theory (Cronbach et al., 1972; Lord
and Novick, 1968), and is interpreted as the percent of observed variance explained
by the true score variance. It was initially intended to assess the measurement error
if an observer takes a measurement repeatedly on the same subject under identical
conditions, or to measure the consistency of two readings obtained by two different
instruments on the same subject under identical conditions. If the true score is
the construct, then reliability is similar to the criterion validity. In practice, the
true score is usually not available, and in this case, reliability represents the scaled
precision. Reliability is often defined with additional assumptions. The following
three assumptions are inherently used and are not usually stated when reporting
reliability.

(a) The true score exists but is not directly measurable.
(b) The measurement is the sum of the true score and a random error, where

random errors have mean zero and are uncorrelated with each other and with
the true score (both within and across subjects).

(c) Any two measurements for the same subject are parallel measurements.

In this context, parallel measurements are any two measurements for the
same subject that have the same means and variances. With assumptions (a) and
(b), reliability, defined above as the ratio of variances, is equivalent to the square
of the correlation coefficient between the observed reading and the true score.
With assumptions (a) through (c), reliability, as defined above, is equivalent to
the correlation of any two measurements on the same subject. This correlation
is called intraclass correlation (ICC) and was originally defined by Galton (1889)
as the ratio of fraternal regression, a correlation between measurements from the
same class (in this case, brothers) in study of fraternal resemblance in genetics.
Estimations of this ICC based on sample moment (Pearson, 1896, 1899, 1901) and
on variance components (Fisher, 1925) were later proposed. Parallel readings are
considered to come from the same class and can be represented by a one-way
ANOVA model (see Section 3). Reliability expressed in terms of ICC is the most
common parameter used across different disciplines. Different versions of ICC used
for assessing reliability have been advocated (Bartko, 1966; Eliasziw et al., 1994;
Müller and Büttner, 1994; McGraw and Wong, 1996; Shrout and Fleiss, 1979) when



536 BARNHART ET AL.

different ANOVA models are used in place of assumptions (b) and (c). We discuss
these versions in Section 3.

2.4. Dependability and Generalizability

The recognition that assumptions (b) and (c) in classical test theory are too
simplistic prompted the development of generalizability theory (GT) (Cronbach
et al., 1972; Shavelson and Webb, 1981, 1991, 1992; Shavelson et al., 1989; Brennan
1992, 2000, 2001). GT is widely known and is used in educational and psychological
testing literature; however, it is barely used in medical research despite many
efforts to encourage broader use since its introduction by Cronbach et al. (1972).
This may be due to the overwhelming statistical concepts involved in the theory
and the limited number of statisticians who have worked in this area. Recently,
Vangeneugden et al. (2005) and Molenberghs et al. (2007) presented linear mixed
model approaches to estimating reliability and generalizability in the setting of a
clinical trial.

GT extends classical test theory by decomposing the error term into multiple
sources of measurement errors, thus relaxing the assumption of parallel readings.
The concept of reliability is then extended to the general concept of generalizability
or dependability within the context of GT. In general, two studies (G-study and
D-study) are involved, with the G-study aimed at estimating the magnitudes of
variances due to multiple sources of variability through an ANOVA model, and
the D-study, which uses some or all of the sources of variability from the G-study
to define specific coefficients that generalize the reliability coefficient, depending on
the intended decisions. In order to specify a G-study, the researcher must define the
universe of generalizability a priori. The universe of generalizability contains factors
with several levels/conditions (finite or infinite) so that researchers can establish the
interchangeability of these levels. For example, suppose there are J observers and
a researcher wants to know whether the J observers are interchangeable in terms
of using a measurement scale on a subject. The universe of generalizability would
include the observer as a factor with J levels. This example corresponds to the
single-facet design. The question of reliability among the J observers thus becomes
the question of generalizability or dependability of the J observers.

To define the generalizability coefficient or dependability coefficient, one must
specify a D-study and the type of decision. The generalizability coefficient involves
the decision based on relative error; i.e., how subjects are ranked according to J
observers, regardless of the observed score. The dependability coefficient involves the
decision based on absolute error; i.e., how the observed measurement differs from
the true score of the subject. To specify a D study, the researcher must also decide
how to use the measurement scale; e.g., does the researcher want to use the single
measurement taken by one of J observers, or the average measurement taken by all
J observers? Different decisions will result in different coefficients of generalizability
and dependability.

2.5. Agreement

Agreement measures the “closeness” between readings. Therefore, agreement is
a broader term that contains both accuracy and precision. If one of the readings



ASSESSING AGREEMENT WITH CONTINUOUS MEASUREMENTS 537

is treated as the accepted reference, the agreement is concerning validity. If all of
the readings can be assumed to come from the same underlying distribution, then
agreement is assessing precision around the mean of the readings. When there is
a disagreement, one must know whether the source of disagreement arose from
systematic shift (bias) or random error. This is important, because a systematic shift
(inaccuracy) usually can be fixed with ease through calibration, while a random
error (imprecision) is often a more cumbersome exercise of variation reduction.

In absolute terms, readings agree only if they are identical and disagree if
they are not identical. However, readings obtained on the same subject or materials
under “same condition” or different conditions are not generally identical, due to
unavoidable errors in every measurement procedure. Therefore, there is a need to
quantify the agreement or “closeness” between readings. Such quantification is best
based on the distance between the readings. Therefore, measures of agreement are
often defined as functions of the absolute differences between readings. This type
of agreement is called absolute agreement. Absolute agreement is a special case of
the concept of relational agreement introduced by Stine (1989). In order to define a
coefficient of relational agreement, one must first define a class of transformations
that is allowed for agreement. For example, one can decide that observers are in
agreement if the scores of two observers differ by a constant; then, the class of
transformation consists of all the functions that add the same constant to each
measurement (corresponding to additive agreement). Similarly, in the case where the
interest is in linear agreement, observers are said to be in agreement if the scores of
one observer are a fixed linear function of those of another. In most cases, however,
one would not tolerate any systematic differences between observers. Hence, the most
common type of agreement is absolute agreement. In this paper, we only discuss
indices based on absolute agreement and direct the readers to the literature (Fagot,
1993; Haber and Barnhart, 2006; Stine, 1989; Zegers, 1986) for relational agreement.

Assessing agreement is often used in medical research for method comparisons
(Bland and Altman, 1986, 1995, 1999; Dunn, 2004; St. Laurent, 1998), assay
validation, and individual bioequivalence (Lin, 1989, 1992, 2000b, 2003; Lin et al.,
2002). We note that the concepts of agreement and reliability may appear different.
As pointed out by Vangeneugden et al. (2005) and Molenberghs et al. (2007),
agreement assesses the degree of closeness between readings within a subject, while
reliability assesses the degree of differentiation between subjects; i.e., the ability
to tell subjects apart from each other within a population. It is possible that
in homogeneous populations, agreement is high but reliability is low, while in
heterogeneous populations, agreement may be low but reliability may be high. This
is true if unscaled index is used for assessing agreement while the scaled index is
used for assessing reliability, because scaled index often depends on between-subject
variability (as shown in Section 3.2) and as a result they may appear to assess
the degree of differentiation of subjects from a population. When a scaled index
is used to assess agreement, the traditional reliability index is a scaled agreement
index (see Section 3). As indicated in Section 3.3.2, the concordance correlation
coefficient (CCC), a popular index for assessing agreement, is a scaled index for
assessing difference between observations. Under comparison of the CCC and the
ICC in Section 3.3.2, the CCC reduces to the ICC under the ANOVA models used
to define the ICC. Therefore, reliability assessed by ICC is a scaled agreement index
under ANOVA assumptions.
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In summary, the concepts used to assess reliable and accurate measurements
have a common theme: assessing closeness (agreement) between observations. We
therefore review the statistical approaches used to assess agreement and relate the
approaches to these concepts in the next section.

3. STATISTICAL APPROACHES FOR ASSESSING AGREEMENT

We now summarize the methodological approaches by which the concepts
described in Section 2 are expressed mathematically for different types of data
structures. Existing approaches for expressing agreement are organized in terms of
the following: (1) descriptive tools, (2) unscaled agreement indices, and (3) scaled
agreement indices. Data structures include (1) one reading by each of multiple
observers; (2) multiple readings by each of multiple observers; and (3) factors or
covariates available that may be associated with the degree of agreement.

We are interested in comparisons of measurements or readings by different
observers, methods, instruments, laboratories, assays, devices, etc. on the same
subject or sample. For simplicity, we use “observers” as a broad term to stand
for either observers, methods, instruments, laboratories, assays or devices, etc..
In general, we treat observers as fixed unless they are indicated as random. We
consider the situation that the intended use of the measurement in practice is a
single observation made by an observer. Thus, the agreement indices reviewed here
are interpreted as measures of agreement between observers to determine whether
their single observations can be used interchangeably, although data with multiple
observations, such as replications or repeated measures by the same observer, may
be used to evaluate the strength of the agreement for single observations.

We consider two distinct situations: (1) the J observers are treated
symmetrically where none of them is treated as a reference; (2) one of the observers
is a reference. Unless stated otherwise, we can assume that we are discussing issues
without a reference observer. If there is a reference observer, we use the J th observer
as the reference where the reference is also measured with error.

We use subject to denote subject or sample, where the subjects or samples
are randomly sampled from a population. Throughout this section, let Yijk be the
kth reading for subject i made by observer j. In most situations, the K readings
made by the same observer are usually assumed to be true replications. In most
situations, we use a general model Yijk = �ij + �ijk� i = 1� � � � � n� j = 1� � � � � J� k =
1� � � � � K with the following minimal assumptions and notations: (1) �ij and �ijk are
independent with means E��ij� = �j and E��ijk� = 0; (2) between-subject and within-
subject variances Var��ij� = �2

Bj and Var��ijk� = �2
Wj , respectively; (3) Corr��ij� �ij′� =

��jj′ � Corr��ij� �ij′k� = 0� Corr��ijk� �ijk′� = 0 for all j� j′� k� k′. Additional notations
include �2

j = �2
Bj + �2

Wj , which is the total variability of observer j and �jj′ =
Corr�Yijk� Yij′k� denotes the pairwise correlation between one reading from observer
j and one reading from observer j′. In general, we have �jj′ ≤ ��jj′ . If the K readings
by an observer on a subject are not necessarily true replications, e.g., repeated
measures over time, then additional structure may be needed for �ijk. In some
specific situations, we may have K = 1 or J = 2, or �ijk may be decomposed further,
with k being decomposed into multiple indices to denote multiple factors, such as
time and treatment group.
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3.1. Descriptive Tools

The basic descriptive statistics are the estimates of means �j , variances �2
j ,

and correlation �jj that can be obtained as sample mean, sample variance for each
observer, and sample correlation between readings by any two observers. For data
where the K readings by the same observer on a subject are true replications,
one may obtain the estimates for between-subject variability �2

Bj and within-subject
variability �2

Wj� j = 1� � � � � J by fitting J one-way ANOVA models for each of the J
observers. For data where k denotes the time of measurement, estimates for �j and
�2
j are obtained at each time point. These descriptive statistics provide intuition on

how the J observers may deviate from each other on average, based on the first and
second moments of the observers distribution. To help understand whether these
values are statistically significant, confidence intervals should be provided along with
the estimates. These descriptive statistics serve as an important intuitive component
in understanding measurements made by observers. However, they do not fully
quantify the degree of agreement between the J observers.

Several descriptive plots serve as visual tools in understanding and interpreting
the data. These plots include (1) pairwise plots of any two readings, Yijk and Yij′k′
by observer j and j′ on the n subjects with the 45 degree line as the reference line
(Lin, 1989); (2) Bland and Altman plots (Bland and Altman, 1986) of average versus
difference between any two readings by observer j and j′ with the horizontal line
of zero as the reference line. Both plots depict the visual examination of the overall
agreement between observers j and j′. If k represents the time of reading, one may
want to examine the plots at each time point.

3.2. Unscaled Agreement Indices

Summary agreement indices based on the absolute difference of readings
by observers are grouped here as unscaled agreement indices. They are usually
defined as the expectation of a function of the difference, or features of the
distribution of the absolute difference. These indices include mean squared
deviation, repeatability coefficient, repeatability variance, reproducibility variance
(ISO), limits of agreement (Bland and Altman, 1999), coverage probability (CP), and
total deviation index (TDI) (Choudhary, 2007a; Choudhary and Nagaraja, 2007;
Lin et al., 2002).

3.2.1. Mean squared deviation, repeatability, and reproducibility. The
mean squared deviation (MSD) is defined as the expectation of the squared difference
of two readings. The MSD is usually used for the case of two observers, each making
one reading for a subject (K = 1) (Lin et al., 2002). Thus

MSDjj′ = E�Yij − Yij′�
2 = ��j − �j′�

2 + ��j − �j′�
2 + 2�j�j′�1− �jj′��

One should use an upper limit of MSD value, MSDul, to define satisfactory
agreement as MSDjj′ ≤ MSDul. In practice, MSDul may or may not be known; this
can be a drawback to this measure of agreement. If d0 is an acceptable difference
between two readings, one may set d2

0 as the upper limit.
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Alternatively, it may be better to use
√
MSDjj′ or E��Yij − Yij′ �� than MSDjj′

as a measure of agreement between observers j and j′, because one can interpret√
MSDjj′ or E��Yij − Yij′ �� as the expected difference, and compare its value to d0,

i.e., define
√
MSDjj′ ≤ d0 or E��Yij − Yij′ �� ≤ d0 as satisfactory agreement. It will be

interesting to compare
√
MSDjj′ � E��Yij − Yij′ �� to MSDjj′ in simulation studies and

in practical applications to examine their performance. Similarly, one may consider
extending MSD by replacing the squared distance function with different distance
functions (see examples in King and Chinchilli, 2001b for distance functions that
are robust to the effects of outliers, or in Haber and Barnhart, 2007). It will be
of interest to investigate the benefits of these possible new unscaled agreement
indices.

The concept of MSD has been extended to the case of multiple observers,
each taking multiple readings on a subject, where none of the observers is
treated as a reference. Lin et al. (2007) defined overall, inter-, and intra-
MSD for multiple observers under a two-way mixed model: Yijk = � + 	i +

j + �ij + �ijk where 	i ≈ �0� �2

	�, (this notation means that 	i has mean 0 and
variance of �2

	), �ij ≈ �0� �2
� �. Furthermore, the error term �ijk has mean 0

and a variance of �2
� . The observer effect 
j is assumed to be fixed with∑

j 
j = 0, and we denote �2

 =

∑
j

∑
j�
j − 
j′�

2/�J�J − 1��. The total, inter-, and
intra-MSD are defined as: MSDtotal�Lin� = 2�2


 + 2�2
� + 2�2

��MSDinter�Lin� = 2�2

 +

2�2
� + 2�2

�/K�MSDintra�Lin� = 2�2
� . The above definitions require equal variance

assumptions in the two-way mixed model. One extension is to define the MSD for
multiple observers without any assumptions such as:

MSDtotal =
∑J

j=1

∑J
j′=j+1

∑K
k=1

∑K
k′=1 E�Yijk − Yij′K′�2

J�J − 1�K2

MSDinter =
∑J

j=1

∑J
j′=j+1 E��ij − �ij′�

2

J�J − 1�

MSDintra =
∑J

j=1

∑K
k=1

∑K
k′=k+1 E�Yijk − Yijk′�

2

JK�K − 1�
�

where �ij = E�Yijk�. One can also define MSDj�intra for each observer as

MSDj�intra =
∑K

k=1

∑K
k′=k+1 E�Yijk − Yijk′�

2

K�K − 1�
�

Thus, MSDintra is the average of J separate MSDj�intra’s. Although the above
definition involves k, the MSDs do not depend on K as long as we have true
replications. For these general definitions of the MSDs, one can show that MSDtotal =
MSDinter +MSDintra (Haber et al., 2005). We note that under the two-way mixed
model, the general MSDtotal and MSDintra reduce to the MSDtotal�Lin� and MSDintra

(Lin), respectively and the general MSDinter is the limit of Lin’s MSDinter�Lin� as
K → �. It would be of interest to write down the expressions of these MSDs based
on the general model, Yijk = �ij + �ijk in place of the two-way mixed model. One can
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also extend the total MSD and inter-MSD to the case where the J th observer is
treated as a reference by using

MSDR
total =

∑J−1
j=1

∑K
k=1

∑K
k′=1 E�Yijk − YiJk′�

2

�J − 1�K2

MSDR
inter =

∑J−1
j=1 E��ij − �iJ �

2

J − 1
�

Pairwise MSDs may be used to model these MSDs as a function of the
observers’ characteristics, e.g., experienced or not. If a subject’s covariates are
available, one may be also interested in modeling the MSD as a function of
covariates such as age, gender, etc., by specifying the logarithm of the MSD (because
the MSD is positive in general) as a linear function of covariates.

Repeatability standard deviation (ISO, 1994) is defined as the dispersion of
the distribution of measurements under repeatability conditions. Thus, repeatability
standard deviation for observer j is defined as �Wj and repeatability variance for
observer j is �2

Wj . Repeatability coefficient or repeatability limit for observer j is

1�96
√
2�2

Wj , which is interpreted as the value within which any two readings by the
jth observer would lie for 95% of subjects (Bland and Altman, 1999; ISO, 1994). It
is expected that the repeatability variances are different for different observers. The
ISO assumed that such differences are small, and stated that it is justifiable to use a
common value for the overall repeatability variance as

�2
r =

∑J
j=1 �

2
Wj

J
�

In this case, we have �2
r = MSDintra/2. Therefore, one can define the overall

repeatability standard deviation, repeatability coefficient, or limit for J observers by
using this �2

r with the additional assumptions.
Reproducibility standard deviation (ISO, 1994) is defined as the dispersion of the

distribution of measurements under reproducibility conditions. If the reproducibility
condition is the usage of J observers, the ISO 5725-1 used the one-way model Yijk =
� + 
j + �ijk to define reproducibility variance as

�2
R = �2


 + �2
r �

where �2

 = Var�
j� with observers treated as random. One may use the

notation �2

 =

∑J
j=1�
j − 
•�2/�J − 1� for the above formula if observers are treated

as fixed with 
• =
∑J

j=1 
j/J . In this case, we note that �2
R = MSDtotal/2. The

reproducibility standard deviation is the square root of �2
R and the reproducibility

coefficient or reproducibility limit is 1�96
√
2�2

R.
We see that the repeatability variance and reproducibility variance correspond

to half of the MSDintra and half of MSDtotal, respectively, under the assumptions used
in the ISO. This suggests that one can extend the definition of repeatability and
reproducibility variances more generally as

�2
r = MSDintra/2� �2

R = MSDtotal/2
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by utilizing the general definitions of the MSDs without making the assumptions
used in the ISO.

Estimations for MSD, repeatability, and reproducibility are usually carried out
by using the sample counterparts of the means and variance components. Inference
is often based on large sample distribution of these estimates or based on normal
assumptions regarding distribution of the data.

It is clear that MSD, reproducibility standard deviation, reproducibility
variance, and reproducibility coefficient are measures of agreement between
observers. They are also measures of validity between two observers if one of them
is the reference standard. Repeatability standard deviation, repeatability variance,
and repeatability coefficient are measures of agreement between replicated readings
within observers, and thus, measures of precision.

3.2.2. Limits of agreement. Due to simplicity and intuitive appeal, limits
of agreement (LOA) (Altman and Bland, 1983, 1986, 1999; Bland and Altman,
2007) are widely used (Bland and Altman, 1992; Ryan and Woodall, 2005) for
assessing agreement between two observers in medical literature. This method was
developed for two observers that can then be used for pairwise comparisons of
J observers. The key principle of the LOA method is to estimate the difference
of single observations between two observers and the corresponding �1− 	� 100%
probability interval (PI) that contains middle 1− 	 probability of the distribution of
difference. The estimates for the limits of this PI are called the limits of agreement.
Let Di = Yi1 − Yi2 be the difference between the single observations of the two
observers. The 95% LOA are �D ± 1�96�D where �D = E�Di� and �2

D = Var�Di�,
under normality assumption on Di. If the absolute limit is less than an acceptable
difference, d0, then the agreement between the two observers is deemed satisfactory.

For data without replications, the LOA can be estimated by replacing �D

and �2
D by the sample mean, D• and sample variance, S2

D, of Di. The variances
of these estimated limits are �1/n± 1�962/�2�n− 1����2

D that can be estimated by
replacing �2

D by the sample variance of Di (Bland and Altman, 1999). The key
implicit assumption for the method of estimation is that the difference between the
two observers is reasonably stable across the range of measurements. Bland and
Altman also showed how to compute the LOA if �D depends on a covariate or
�2
D depends on the average readings. The LOA is often displayed in the popular

Bland and Altman plot (average, �Yi1 + Yi2�/2, versus difference, Yi1 − Yi2� with two
horizontal lines of the estimated LOA: D• ± 1�96SD and two horizontal lines of the
95% lower bound of the lower limit and 95% upper bound of the upper limit:

D• − 1�96SD − 1�96

√(
1
n
− 1�962

2�n− 1�

)
S2
D� D• + 1�96SD + 1�96

√(
1
n
+ 1�962

2�n− 1�

)
S2
D�

Lin et al. (1998) argued that instead of using the above two-sided CIs for
the estimated LOA, one can use a one-sided upper confidence bound (UCB)
for �D + 1�96�D and a one-sided lower confidence bound (LCB) for �D − 1�96�D

to derive UCB = D• + anSD and LCB = D• − anSD with an = 1�96+ 1�71n−1/2tn1�	�
where tn−1�	� is the upper 	th percentile of a tk distribution. Interval (LCB, UCB)
is closely related to the tolerance interval (Choudhary, 2007a,b; Choudhary and
Nagaraja, 2007) for TDI0�95, an index discussed in Section 3.2.3.
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The LOA method has also been extended to data with replications or with
repeated measures (Bland and Altman, 1999, 2007). Bland and Altman (2007)
distinguish two situations: (1) multiple time-matched observations per individual by
two observers where the true value of the subject may or may not change over
time; (2) multiple observations per individual (not time-matched) by two observers
where the true value of the subject is constant at a prespecified length of time when
the two observers take measurements. Naturally the LOA in the first situation is
narrower than in the second because of reduced variability due to time-matching.
One can think of the first situation as time-matched repeated measures of observers
on the same subject and the second situation as unmatched replications by observers
on the same subject. The LOAs for these two situations are still defined as �D ±
1�96�D, except that now Di is defined differently and thus the LOAs for these two
situations have slightly different interpretations. In the first situation, Dik = Yi1k −
Yi2k� i = 1� � � � � n� k = 1� � � � � Ki with �D = E�Dik� and �2

D = Var�Dik� for all k, where
Yi1k and Yi2k are two observations made by the two observers at the same time.
The underlying true value of the subject may or may not change over time when
Ki measurements are taken by an observer. This may correspond to the cases of
matched repeated measures or matched replications, respectively. Note that if Ki =
1 for all i, it reduces to the original situation of no multiple observations.

In the second situation, Dikik
′
i
= Yi1ki − Yi2k′i� i = 1� � � � � n� ki = 1� � � � � K1i� k

′
i =

1� � � � � K2i with �D = E�Dikik
′
i
� and �2

D = Var�Dikik
′
i
� for all ki and k′i where Yi1ki and

Yi2k′ i are two observations made by the two observers at any time of a specified
interval (e.g., 1 day) within which the underlying true value of the subject does not
change. The number of observations on a subject may differ for different observers.
Due to time matching in the first situation, one would expect that the �2

D in the
first situation is smaller than the one from the second situation. However, if there is
no time effect in the second situation, one would expect these two variances to be
similar. The LOA in the first situation has the interpretation of the LOA between
two observers who made single observations at the same time. The LOA in the
second situation has the interpretation of limits of agreement between two observers
who made single observations at a specified time interval. We emphasize that the
focus is still on the LOA for single observations between two observers, although
multiple observations per observer are used to obtain estimates for �D and �2

D.
Bland and Altman (1999, 2007) described a method of moment approach to

estimating �D and �2
D for data with multiple observations in both situations. In both

situations, �D is estimated as �̂D = Y•1• − Y•2• averaging over indices of i and k or
k′. In the first situation, �2

D is estimated via a one-way ANOVA model for Dik,

Dik = �D + IDi + EDik�

where IDi represents the subject by observer interaction, and EDij represents
independent random error within the subject for that pair of observations. The
implicit assumption for this model is that there is no time effect in Dik, even though
there may be a time effect in Yijk. In other words, Dik’s are treated as replications
of �D + IDi. Under this model, �2

D = �2
DI + �2

DW where �2
DI = Var�IDi� and �2

DW =
Var�EDik�. Let MSBD and MSWD be the between-subject and within-subject
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mean sums of squares from this one-way ANOVA model. Then the method of
momentestimator for �2

D is

�̂2
D = MSBD −MSWD

�
∑

Ki�
2−∑

K2
i

�n−1�
∑

Ki

+MSWD�

where the first term on the right estimates �2
DI and the second term estimates �2

DW . In
the second situation, two one-way ANOVA models are used, one for each observer:

Yi1ki = �1 + Ii1 + Ei1ki
� ki = 1� � � � � K1i� Yi2k′i = �1 + Ii1 + Ei2k′ � k′i = 1� � � � � K2i�

Thus, �2
D = Var�Yi1kiYi2k′i � = �2

I1 + �2
I2 + �2

W1 + �2
W2, where �2

Ij = Var�Iij�� �
2
Wj =

Var�Eijki
� j = 1� 2. The implicit assumption is that Yijki ’s, ki = 1� � � � � Ki are

replications of �j + Iij given i and j. Note that Var�Y•1• − Y•2•� = �2
I1 +

1
n

(∑ 1
K1i

)
�2
W1 + �2

I2 + 1
n

(∑ 1
K2i

)
�2
W2.

Thus,

�2
D = Var�Y•1• − Y•2•�+

(
1− 1

n

(∑ 1
K1i

))
�2
W1 +

(
1− 1

n

(∑ 1
K2i

))
�2
W2�

which can be estimated by replacing Var�Y•1• − Y•2•� by its sample variance from
data �Yi1• − Yi2•�� i = 1� � � � � n and replacing �2

Wj by MSWj , the within-subject mean
sums of squares from the one-way ANOVA model for observer j. It will be of
interest to extend the LOA for more than two observers.

3.2.3. Coverage probability and total deviation index. As elaborated
by Lin and colleagues (Lin, 2000a,b; Lin et al., 2002), an intuitive measure of
agreement is a measure that captures a large proportion of data within a boundary
for allowed observers’ differences. The proportion and boundary are two quantities
that correspond to each other. If we set d0 as the predetermined boundary; i.e., the
maximum acceptable absolute difference between two observers’ readings, we can
compute the probability of absolute difference between any two observers’ readings
less than d0. This probability is called coverage probability (CP). On the other hand,
if we set �0 as the predetermined coverage probability, we can find the boundary
so that the probability of absolute difference less than this boundary is �0. This
boundary is called total deviation index (TDI) and is the 100�0 percentile of the
absolute difference of paired observations. A satisfactory agreement may require a
large CP or, equivalently, a small TDI . For J = 2 observers, let Yi1 and Yi2 be the
readings of these two observers, the CP and TDI are defined as

CPd0 = Prob��Yi1 − Yi2� < d0�� TDI�0 = f−1��0�

where f−1��0� is the solution of d by setting f�d� = Prob��Yi1 − Yi2 < d� = �0.
Estimation and inference on CPd0

and TDI�0 often requires a normality
assumption on Di = Yi1 − Yi2. Assume that Di is normally distributed with mean �D



ASSESSING AGREEMENT WITH CONTINUOUS MEASUREMENTS 545

and variance �2
D. We have

CPd0
= 

(
d0 − �D

�D

)
−

(−d0 − �D

�D

)
= �21

(
d2
0�

�2
D

�2
D

)
≈ CP∗

d0
= �21

(
d2
0

MSD12

)

TDI�0 = �d

√
�
2�−1�
1

(
�0�

�2
D

�2
D

)
≈ TDI∗�0 = Q0

(
�2
D + �2

D

) = Q0

√
MSD12�

where �t� is the cumulative distribution function of standard normal distribution,
MSD12 = E�Yi1 − Yi2�

2 = �2
D + �2

D is the MSD between the two observers, �21�t� is
the cumulative distribution of chi-square distribution with one degree of freedom,
�
2�−1�
1 ��0� �� is the inverse of the chi-square distribution with one degree of freedom

and the non-centrality parameter �, and Q0 = −1
( 1+�0

2

)
with −1�t� as the inverse

function of �t�. Point estimation for CPd0
is obtained by plugging the sample

counterparts for �D and �2
D; the inference is based on the asymptotic distribution for

ln�ĈPd0
/�1− ĈPd0

�� described in Lin et al. (2002).
Similarly, estimation for TDI�0 is obtained by plugging the sample

counterparts of the parameters; the inference is based on approximation for TDI�0
with 2 ln�TDI∗�0� = 2 lnQ0 + lnMSD12 by using the asymptotic distribution of
ln�M̂SD12� (Lin et al., 2002). This approximation is usually reasonable if �2

D/�
2
D is

small. Due to approximation, different conclusions may be reached with the above
method of inference, especially for small sample sizes and large values of �2

D/�
2
D

when testing the following two equivalent hypotheses:

H0 � CPd0
≤ �0 vs H1 � CPd0

> �0� (1)

H0 � TDI�0 ≥ d0 vs H1 � TDI�0 < d0� (2)

Alternative inference approaches are available in this situation. Wang and Hwang
(2001) proposed a nearly unbiased test (NUT) for testing (1) and Choudhary and
Nagaraja (2007) proposed an exact test and modified NUT for testing (1) and
equivalently for testing (2) for data with a small sample size (≤30) and a bootstrap
test for data with a moderate sample size. These tests appear to outperform previous
tests in terms of maintaining the type I error rate close to the nominal level
for all combinations of parameter values under the normality assumption. Rather
than computing a �1− 	�100% confidence interval on an approximated value of
TDI∗�0 , they provided a 1− 	 upper confidence bound, U , for TDI�0 and used
�−U�U� as a 1− 	 confidence tolerance interval with a probability content of �0

for the distribution of difference. An interval �L� U� is a tolerance interval with a
probability content p and confidence 1− 	 if P�F�U�− F�L� ≥ p� = 1− 	, where F
is the cumulative distribution function of X (Guttman, 1988). For �0 = 0�95 and
	 = 0�05, this tolerance interval is expected to be wider than one based on LOAs,
because the probability content of the tolerance interval is 0.95 with confidence level
95%, whereas the probability content of the 95% LOAs is approximately 0.95 on
average. Choudhary and Nagaraja (2007) extended their approach to incorporate
a continuous covariate (Choudhary, 2007c; Choudhary and Ng, 2006) and to deal
with data with replications and longitudinal measurements (Choudhary, 2007a).
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Lin et al. (2007) extended the concept of CP and TDI to data with more
than two observers making multiple observations on a subject, where none of the
observers is treated as reference. Using the approximations that link the CP and the
TDI with the MSD, they define CP and TDI for multiple observers as

CPd0total
= �21

(
d2
0

MSDtotal

)
� CPd0inter

= �21

(
d2
0

MSDinter

)
� CPd0intra

= �21

(
d2
0

MSDintra

)
TDI�0total = Q0

√
MSDtotal� TDI�0inter = Q0

√
MSDinter � TDI�0intra = Q0

√
MSDintra

where MSDtotal�MSDinter �MSDintra were defined in Section 3.2.1 under the two-way
mixed model with normality assumption. One can extend the CP and TDI to the
case where the J th observer is treated as a reference by using the MSD for the case
of the J th observer as a reference.

3.2.4. Comments. In summary, the unscaled agreement indices of MSD,
LOA, CP, and TDI are all based on the differences between observers’ readings
for the case that none of the observers is treated as a reference. These indices
are related to each other under some assumptions. First, MSD has approximately
one-to-one correspondence to the CP and TDI under normality assumption and
small value for �2

D/�
2
D. Therefore, one has the same criterion of agreement based on

MSD, CP, or TDI indices. If we use an upper limit, MSDul for declaring satisfactory
agreement, i.e., MSD < MSDul, this should correspond to using Pd0

> �21
( d20
MSDul

)
or

TDI�0 < Q0

√
MSDul for declaring satisfactory agreement.

Second, for two observers who do not make replicated measurements, the MSD
and LOA are related by LOA = �D ± 1�96

√
MSD12 − �2

D, because MSD12 = �2
D + �2

D.
In particular, if there are no systematic mean shifts (i.e., �j = � for j = 1� 2) then
the 95% LOA corresponds to ±1�96

√
MSDtotal, whose absolute value is the 95%

reproducibility limit. For data with replicated measurements with two observers,
this relationship holds by replacing MSD12 by MSDtotal. Third, a tolerance interval
derived using TDI0�95 and the 95% LOA have related interpretations. It will be of
interest to compare these two intervals under normality assumption. Future research
is needed for these unscaled agreement indices when one of the observers is treated
as a reference. Also of interest is the behavior of these indices for non-normal data.

3.3. Scaled Agreement Indices

3.3.1. Intraclass correlation coefficient. Historically, agreement between
quantitative measurements has been evaluated via the intraclass correlation
coefficient (ICC). Numerous versions of ICC (Bartko, 1966, 1974; Eliasziw et al.,
1994; Müller and Büttner, 1994; McGraw and Wong, 1996; Shrout and Fleiss, 1979)
have been proposed in many areas of research by assuming different underlying
ANOVA models for the situation where none of the observers is treated as
reference. In earlier research on ICCs (prior to McGraw and Wong’s work in 1996),
ICCs were rigorously defined as the correlation between observations from different
observers under different ANOVA model assumptions where observers are treated
as random. An ICC (denoted as ICC3c below) is also proposed under the two-
way mixed model where the observers are treated as fixed, using the concept of
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correlation. The ICC3c was originally proposed by Bartko (1966) and later corrected
by Bartko (1974) and advocated by Shrout and Fleiss (1979). McGraw and Wong
(1996) suggested calling ICC3c as ICC for consistency and proposed an ICC for
agreement (denoted here as ICC3). They also added an ICC for the two-way mixed
model without interaction (denoted here as ICC2).

We unite different versions of ICCs into three ICCs under three kinds of
model assumption with unifying notations for both cases of random and fixed
observers. We do not present ICCs for averaged observations (McGraw and Wong,
1996; Shrout and Fleiss, 1979), as we are interested in agreement between single
observations. We assume that each observer takes K readings on each subject where
K = 1 if there is no replication and K ≥ 2 if there are replications (Eliasziw et al.,
1994). We discuss situations of K = 1 and K ≥ 2 when comparing ICC to CCC in
Section 3.3.1. For each ICC, estimates are obtained via method of moment based on
the expectation of the mean sums of squares from these different ANOVA models.
The definitions of the three types of ICCs and their corresponding estimates are
presented below:

• ICC1 is based on a one-way random effect model without observer effect (Bartko,
1966; McGraw and Wong, 1996; Shrout and Fleiss, 1979):

Yijk = � + 	i + �ijk

with assumptions: 	i ∼ N�0� �2
	�� �ijk ∼ N�0� �2

��; and �ijk is independent of 	i.

ICC1 =
�2
	

�2
	 + �2

�

� ÎCC1 =
MS	 −MS�

MS	 + �JK − 1�MS�
�

where MS	 and MS� are the mean sums of squares from the one-way ANOVA
model for between and within subjects, respectively.

• ICC2 is based on a two-way mixed or random (depending on whether the
observers are fixed or random) effect model without the observer-subject
interaction (McGraw and Wong, 1996):

Yijk = � + 	i + 
j + �ijk

with assumptions: 	i ∼ N�0� �2
	�� �ijk ∼ N�0� �2

��, and �ijk is independent of 	i. 
j is
treated as either as a fixed or a random effect, depending on whether the observers
are fixed or random. If observers are fixed, notation �2


 =
∑J

j=1 

2
j /�j − 1� is used

with constraint of
∑J

j=1 
j = 0. If observers are random, additional assumptions
are 
j ∼ N�0� �2


� and 	i� 
j� �ijk are mutually independent.

ICC2 =
�2
	

�2
	 + �2


 + �2
�

� ÎCC2 =
MS	 −MS�

MS	 + �JK − 1�MS� + J�MS
 −MS��/n
�

• ICC3 is based on a two-way mixed or random effect model (depending on whether
the observers are fixed or random) with observer-subject interaction (Eliasziw
et al., 1994; McGraw and Wong, 1996).

Yijk = � + 	i + 
j + �ij + �ijk
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with assumptions: 	i ∼ N�0� �2
	�� �ijk ∼ N�0� �2

��, and �ijk is independent of 	i.
If observers are fixed, notation �2


 =
∑J

j=1 

2
j /�J − 1� is used with constraint

of
∑J

j=1 
j = 0 and �ij ∼ N�0� �2
� �. If the observers are random, additional

assumptions are 
j ∼ N�0� �2

�� �ij ∼ N�0� �2

� � and 	i� 
j� �ij� �ijk are mutually
independent.

ICC3 �fixed 
j� =
�2
	 − �2

�/�J − 1�

�2
	 + �2


 + �2
� + �2

e

� ICC3 �random 
j� =
�2
	

�2
	 + �2


 + �2
� + �2

e

ÎCC3 =
MS	 −MS�

MS	 + J�K − 1�MS� + �J − 1�MS� + J�MS
 −MS��/n
�

As mentioned earlier, Bartko (1974) and Shrout and Fleiss (1979) presented the
following ICC, later called ICC for consistency (e.g., observers are allowed to differ
by a fixed constant) by McGraw and Wong (1996) using

ICC3c =
�2
	 − �2

�/�J − 1�

�2
	 + �2

� + �2
�

when observers are treated as a fixed effect. The ICC3c does not take into
account systematic shifts by observers in the denominator; thus, it is measure
of consistency rather than agreement. For all three ICCs, if the observer is a
random effect, the ICC defined with the assumed ANOVA model is equal to
corr�Yijk� Yij′k′�. If the observer is a fixed effect, we have corr�Yijk� Yij′k′�= ICC3c

under the two-way mixed model with interaction. We also note that if there
is no replication (K = 1), we have MS� = MS�, which estimates �2

� + �2
� in the

expression for ÎCC3. Thus, for K = 1, we have ÎCC2 = ÎCC3. Inference about
ICCs is well developed and McGraw and Wong (1996) provided a very detailed
summary. All ICCs require an assumption of normality, equal variances of
Var�Yijk � j�, and equal pairwise correlations of Corr�Yijk� Yij′k′�. The ICC1 also
requires the additional assumption of equal means of E�Yijk � j� and corresponds
to the original ICC that requires measurements to be parallel (see Section 2.3).
The assumptions for ICC1 may be reasonable if there is only one observer taking
replicated measurements. In this case, ICC1 assesses test-retest reliability, or scaled
repeatability. With additional assumptions, ICC3 reduces to ICC2 and ICC2 reduces
to ICC1.

The assumptions used to define ICC are the main disadvantages to using
ICCs to assess agreement. Of note is the fact that all ICCs are increasing functions
of between-subject variability (represented here by �2

	�. Thus, it would attain
a high value for a population with substantial heterogeneity. Due to this fact,
Vangeneugden et al. (2004, 2005) and Molenberghs et al. (2007) interpret the ICC
as a reliability measure that assesses the degree of differentiation of subjects from a
population, rather than agreement.

The ICCs presented here may be used for data with repeated measures
where k denotes the time of the measurement. However, these ICCs may not
be very useful unless one modifies the assumptions on �ijk in order to take into
account the time structure. A linear mixed-model approach to estimate reliability
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for repeated measures has been proposed by Vangeneugden et al. (2004) and
Molenberghs et al. (2007).

3.3.2. Concordance correlation coefficient. The CCC is the most popular
index for assessing agreement in the statistical literature. The CCC was originally
developed by Lin (1989) for two observers (J = 2), each making a single reading on
a subject. It was later extended to multiple J observers for data without replications
(Barnhart et al., 2002; King and Chinchilli, 2001a; Lin, 1989; Lin et al., 2002)
and for data with replications (Barnhart et al., 2005a; Lin et al., 2007) where
none of the observers is treated as reference. These extensions included the original
CCC for J = 2 as a special case. Recently, Barnhart et al. (2007b) extended the
CCC to the situation where one of the multiple observers is treated as reference.
Barnhart and Williamson (2001) used a generalized estimating equations (GEE)
approach to modeling pairwise CCCs as a function of covariates. Chinchilli et al.
(1996) and King et al. (2007a,b) extended the CCC for data with repeated measures
comparing two observers. Quiroz (2005) extends the CCC for data with repeated
measures comparing multiple observers by using the two-way ANOVA model
without interaction. Due to the assumptions of the ANOVA model, the CCC
defined by Quiroz (2005) is the special case of CCC by Barnhart et al. (2005a) for
data with replications.

We first present the total CCC, inter-CCC, and intra-CCC for multiple
observers for data with replications where none of the observers is treated as a
reference. Of note here is the fact that the total CCC is the usual CCC for data
without replications. The definition of the total CCC does not require replicated
data (Barnhart et al., 2002; King and Chinchilli, 2001a), although one can estimate
both the between-subject (�2

Bj) and within-subject (�2
Wj) variabilities for data with

replications, while only total variability (�2
j = �2

Bj + �2
Wj) can be estimated for data

without replications. One cannot estimate inter- or intra-CCCs for data without
replications.

Let Yijk be the kth replicated measurements for the ith subject by the jth
method and write Yijk = �ij + �ijk with the assumptions and notations in the begining
of Section 3. The CCC for assessing agreement between J observers using data with
or without replications can be written

CCCtotal = �c = 1−
∑J−1

j=1

∑J
j′=j+1 E�Yijk − Yij′k′�

2∑J−1
j=1

∑J
j′=j+1 EI�Yijk − Yij′k′�

2
(3)

= 2
∑J−1

j=1

∑J
j′=j+1 �j�j′�jj′

�J − 1�
∑J

j=1 �
2
j +

∑J−1
j=1

∑J
j′=j+1��j − �j′�

2
(4)

= 2
∑J−1

j=1

∑J
j′=j+1 �Bj�Bj′��jj′∑J−1

j=1

∑J
j′=j+1�2�Bj�Bj′ + ��j − �j′�

2 + ��Bj − �Bj′�
2 + �2

Wj + �2
Wj′ �

(5)

where EI is the conditional expectation given independence of Yijk� Yij′k′ . Although
the above definition involves k, the CCC does not depend on K as long as they
are true replications. Expression (4) can be used for the CCC for data without



550 BARNHART ET AL.

replications, while both expressions (4) and (5) can be used for total CCC for
data with replications. With replications, this CCC is the total CCC defined in
Barnhart et al. (2005a) and Lin et al. (2007). Fay (2005) called the CCC a
fixed marginal agreement coefficient (FMAC) and proposed a random marginal
agreement coefficient (RMAC) by replacing EI�Yijk − Yij′k′�

2 with EZj
EZj′ �Zj − Zj′�

2,
where Zj and Zj′ are independent and identically-distributed random variables
with a mixture distribution of random variable, 0�5Yj + 0�5Yj′ . We note later in
a comparison of CCC and ICC that this RMAC is closely related to E�ÎCC1�

with expectations taken under the general model of Yijk = �ij + �ijk. Barnhart et al.
(2005a) also defined inter-CCC at the level of �ij’s as

CCCinter = �c��� = 1−
∑J−1

j=1

∑J
j′=j+1 E��ij − �ij′�

2∑J−1
j=1

∑J
j′=j+1 EI��ij − �ij′�

2

= 2
∑J−1

j=1

∑J
j′=j+1 �Bj�Bj′��jj′∑J−1

j=1

∑J
j′=j+1�2�Bj�Bj′ + ��j − �j′�

2 + ��Bj − �Bj′�
2�

and intra-CCC for observer j as

CCCj�intra = �I
j = 1−

∑K−1
k=1

∑J
k′=k+1 E�Yijk − Yijk′�

2∑K−1
k=1

∑J
k′=k+1 EI�Yijk − Yijk′�

2

= ICC1j
= �2

Bj

�2
Bj + �2

Wj

�

which is the ICC1 for observer j in Section 3.3.1. The total CCC, inter-CCC, and
intra-CCCs are related by

1
�c

= 1
�c���

+ 1
�
�

where

1
�
= �J − 1�

∑J
j=1 �

2
Wj

2
∑J−1

j=1

∑J
j′=j+1 �Bj�Bj′�ujj′

=
J∑

j=1

�j

1− �I
j

�I
j

with �j = �2
Bj/

(
2
∑J−1

j=1

∑J
j′=j+1 �Bj�Bj′��jj′

)
is the weighted sum of the odds of 1− �I

j .
Lin et al. (2007) defined an inter-CCC, CCCinter(Lin), at the level of average

readings Yij•, rather than at the level of �ij . Thus, Lin’s inter-CCC depends on the
number of replications; as the number of replications approaches infinity, it becomes
the inter-CCC defined by Barnhart et al. (2005a), (i.e., CCCinter�Lin� → CCCinter as
K → �). Lin et al. (2007) also define an overall intra-CCC, rather than separate
intra-CCCs for each observer. This overall intra-CCC is the average of the J intra-
CCCs above.

Barnhart et al. (2007a,b) extended these CCCs to the case where the J th
observer is treated as a reference. In this case, while definition for the intra-CCCs



ASSESSING AGREEMENT WITH CONTINUOUS MEASUREMENTS 551

remains the same, the total-CCC and inter-CCC are defined as

CCCR
total = �R

c = 1−
∑J−1

j=1 E�Yij − YiJ �
2∑J−1

j=1 EI�Yij − YiJ �
2
= 2

∑J−1
j=1 �j�J�jJ∑J−1

j=1 ��
2
j + �2

J + ��j − �J�
2�

= 2
∑J−1

j=1 �Bj�BJ��jJ∑J−1
j=1 �2�Bj�BJ + ��j − �J�

2 + ��Wj − �WJ�
2 + �2

Wj + �2
WJ �

�

CCCR
inter = �c���

R = 1−
∑J−1

j=1 E��ij − �iJ �
2∑J−1

j=1 EI��ij − �iJ �
2

= 2
∑J−1

j=1 �Bj�BJ��jJ∑J−1
j=1 �2�Bj�BJ + ��j − �J�

2 + ��Bj − �BJ �
2�

They are related via

1
�R
c

= 1
�c���

R
+ 1

�R∗

where

1
�R∗

=
∑J−1

j=1 ��
2
Wj + �2

WJ�

2
∑J−1

j=1 �Bj�BJ��jJ

=
J∑

j=1

�R
j

1− �I
j

�I
j

�

with �R
j = �2

Bj/�2
∑J−1

j=1 �Bj�BJ��jJ �� j = 1� � � � � J − 1 and �R
J = �J − 1��2

BJ/

�2
∑J−1

j=1 �Bj�BJ��jJ � is the weighted sum of the odds of 1− �I
j . We note that for

J = 2, the CCCs for the case with a reference observer are the same as for the ones
without reference observer.

We can interpret the CCCtotal as a measure of overall agreement and the
CCCR

total as a measure of validity. The CCCinter assesses systematic shifts and
CCCj�intra assesses the precision of the jth observer. All of these indices are scaled
relative to the between-subject variability (�2

Bj) and would produce a high value for
a population with large between-subject variability.

For the special case of J = 2 and K = 1, Lin (1989) defined �12 = corr�Yi1� Yi2�
and �a = 2�1�2/�2�1�2 + ��1 − �2�

2 + ��1 − �2�
2� as the precision and accuracy

components of the CCC, respectively. These two components are scaled indices of
systematic bias and precision. We note that �12 = ��12

√
�I
1�

I
2 and thus if ��12 = 1� �1�2

is an inverse of intra-CCCs that are scaled indices of within-subject variabilities �2
Wj .

We note that �a assesses the systematic bias due to both location and scale shifts.
If the agreement between multiple observers is not satisfactory based on the

CCCs, it is useful to compare the pairwise CCCs of multiple observers to find
which observers do not agree well. One may be also interested in whether there is
a trend in the agreement, or whether the observers have good or poor agreement
in particular subgroups. Barnhart and Williamson (2001) used the GEE approach
to compare these pairwise CCCs and to investigate the impact of covariates. One
should be cautious in interpreting CCCs when covariates are used in modeling.
Because CCCs depend on between-subject variability, one must ensure that between-
subject variability is similar across the range of covariate values. CCC values may
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decrease due to decreased between-subject variability when considering subgroups
of different covariate values. The GEE approach can be extended to compare CCCs
over time in cases where time is a covariate. Specifically, for data with repeated
measures, and using J = 2 as an example, CCCs can be computed at each time
point, and one can model CCCs with Fisher’s Z-transformation as a function of
time. If there is no time effect, one can obtain a common CCC that is aggregated
over time. This common CCC is similar to the straight average of CCCs computed
from each time point, but differs from the CCC discussed below by Chinchilli et al.
(1996) and King et al. (2007a) for repeated measures.

For two observers (J = 2), Chinchilli et al. (1996) proposed weighted CCC,
CCC���, and King et al. (2007a) proposed repeated measures CCC, CCC�rm�, for
data with repeated measures. The repeated measurements can occur due to multiple
visits in longitudinal studies, or arise when multiple subsamples are split from the
original sample. The repeated measures are not considered replications because
they may not be independently and identically distributed, given subject or sample.
Suppose that for each observer, there are p repeated measures for a subject, rather
than K replications. There are then a total of p2 pairs of measurements between the
two observers. Intuitively, one can assess agreement by using an agreement matrix
CCCp×p consisting of all pairwise CCCs based on the p2 pairs of measurements using
Lin’s (1989) original definition of CCC. These pairwise CCCs are concerned with
agreement between observations of the two observers who made measurements at
the same or at different time points, although the agreement between measurements
at the same time is probably the most interesting. One may be interested in assessing
agreement between measurements at different time points if the true value of the
subject is constant at a prespecified length of time when the observations are taken.
The question is how to aggregate the information by using one summary index,
instead of these p2 numbers.

Chinchilli et al. (1996) constructed the CCC��� as a weighted average of q
CCCs where the q CCCs are defined as the CCCs between two observers based
on q predicted (transformed) new variables obtained from a random-coefficient
generalized multivariate ANOVA model. The model-based transformation of
observations is most useful if the observers take different numbers of repeated
measures over time or across subjects. In the case where each observer takes p
measurements at the same p time points, one would not need the transformation (or
the transformation is identity) and we have q = p. The weights used in Chinchilli
et al. (1996) are the inverses of within-subject variabilities. If the within-subject
variabilities are the same for all subjects, then the CCC��� is the same as the straight
average of the p pairwise CCCs between two observers who made measurements
at one of the p time points. In this special case, the CCC��� is similar to the
common CCC obtained by using the GEE approach (Barnhart and Williamson,
2001) described above in cases where there is no time effect.

Let Yi1 = �Yi11� � � � � Yi1p�
′ and Yi2 = �Yi21� � � � � Yi2p�

′ be the observations made
by two observers, respectively. King et al. (2007a) defined repeated measures CCC
by using a distance matrix D as

CCCD = �c�rm = 1− E��Yi1 − Yi2�
′D�Yi1 − Yi2��

EI��Yi1 − Yi2�
′D�Yi1 − Yi2��

�
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D can be thought of as a weighting matrix. Rather than taking the weighted average
of the pairwise CCCs, the repeated measure of CCC here is the ratio of the weighted
numerator and weighted denominator based on the pairwise CCCs. This weighting
approach is probably more stable than the weighted average of the resulting divisions
of numerators and denominators from the pairwise CCCs. Nevertheless, the repeated
measures CCC can probably be rewritten as a weighted average of the pairwise CCCs,
where the weights would be a function ofD and population parameters. Four options
for the D matrix are considered in King et al. (2007a) with the two most interesting
cases of (1) identity matrix D = Ip×p and (2) matrix with all entries of one, D = �dkk′�
with dkk′ = 1. The first option gives the same weight to observations taken at the
same time and zero weight to all others; the second option gives the same weight to
observations taken at the same time and at different times.

King et al. (2007b) extended the repeated measures CCC to a class of repeated
measures of agreement as

CCCD�� = �c�rm��� = 1− E�
∑p

k=1

∑p
k′=1 dkk′ �Yi1k − Yi2k���Yi1k′ − Yi2k′ ���

EI�
∑p

k=1

∑p
k′=1 dkk′ �Yi1k − Yi2k���Yi1k′ − Yi2k′ ���

�

where it reduces to the repeated measures CCC if � = 1 and to a parameter
comparable to repeated measures version of kappa (Cohen, 1960, 1968) index for
assessing agreement between categorical measurements if � = 0. It would be of
interest to extend the repeated measures CCC to the general case of J observers.
King et al. (2007a,b) did not consider agreement between observations made by the
same observer at different time points. With an additional assumption that takes
time into account, one may be able to define and CCCintra and CCCinter for repeated
measures and to derive the relationship of CCCD with CCCintra and CCCinter , when
D is the identity matrix. It would also be of interest to extend the repeated measures
CCC to the case with one observer as a reference.

Estimation of CCCs can be done by plugging in the sample counterparts of the
population parameters. These estimates can also be obtained from SAS procedure
MIXED (Barnhart et al., 2005a; Carrasco and Jover, 2003a) by using the following
sample codes:

/ * if K = 1 */
proc mixed;
model Y = observer/s;
random id;
run;

/* if K > 1 */
proc mixed;
class id observer;
model Y = observer/noint s;
random observer/G subject = id type = un V;
repeated/R group = observer;
run;

where the solution in the model statement provides the estimates for �j’s, the
G matrix provides the estimates for �2

Bj and ��jj′ , and the R matrix provides
the estimates for �2

Wj . Carrasco and Jover (2003a) noted that �Y•j• − Y•j′•�2
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is a biased estimator of ��j − �j′�
2 because E�Y•j• − Y•j′•�2 = ��j − �j′�

2 +
Var�Y•j•�+ Var�Y•j′•�− 2Cov�Y•j•� Y•j′•� = ��j − �j′�

2 + �2
Bj/n+ �2

Wj/�nK�+
�2
Bj′/n+ �2

Wj′/�nK�− 2�Bj�Bj′��jj′/n. The bias may be negligible for moderate-to-
large sample sizes.

Parametric, semiparametric, and nonparametric approaches have been
proposed for inference of CCCs. If we assume normality of the data, asymptotic
distribution of the estimated CCCs may be used for inference (Carrasco and Jover,
2003a; Lin, 1989). The semiparametric approach is available via GEE approach
(Barnhart and Williamson, 2001; Lin et al., 2007) and the nonparametric approach
was proposed by King and Chinchilli (2001a) using U-statistics. Williamson
et al. (2007) proposed and compared permutation and bootstrap tests for testing
equalities of CCCs under various conditions. The permutation test is only valid if
the joint distributions of the observations under these various conditions are the
same, an assumption that may be difficult to verify. Thus, bootstrap-based test may
be preferred.

3.3.2.1. Comparison of CCC and ICC. While (total) CCC and ICC are
similar indices, there are some differences between them: (1) the ICC has been
proposed for both fixed and random observers, while the CCC usually treats the
observers fixed; and (2) the ICC requires ANOVA model assumptions, while the
CCC does not. However, in specific cases, the ICC and CCC are the same or
have similar values (Carrasco and Jover, 2003a; Nickerson, 1997). For example, if
there are no replications, Carrasco and Jover (2003a) demonstrated that ICC2 is the
same as total CCC even without the ANOVA model assumption. In general, if the
ANOVA model assumptions are correct, the CCC under this model reduces to the
ICC defined by this ANOVA model.

ICC estimators are based on unbiased estimates for the parameters used in
the assumed ANOVA models. However, it is not clear what the ICC estimators are
estimating if the assumed ANOVA models are not correct. Using a general model
of Yijk = �ij + �ijk, Chen and Barnhart (2007) compared expected values of the three
ICC estimators in Section 3.3.1 under this general model to the total CCC under
the same model. They approximated the expected values of the ICC estimators by
taking the expectation of the numerator and denominator under this general model.
They found that if there are no replications �K = 1�� E�ÎCC1� may be smaller or
larger than the CCC, where for J = 2,

E�ÎCC1� =
2��1�2 − 0�5��1 − �2�

2

�2
1 + �2

2 + 0�5��1 − �2�
2
�

We note that this E�ÎCC1� is the same as the random marginal agreement coefficient
(RMAC) proposed by Fay (2005) for continuous response. For ICC2 and ICC3, we
have equality, i.e, E�ÎCC2� = E�ÎCC3� = CCC. For data with replications �K > 1�,
Chen and Barnhart (2007) found that under the general model, E�ÎCC3� = CCC.
However, the expected ICCs for the first two ICC estimators depend on the number
of replications, K, whereas the CCC does not depend on K. For the special case with
homogeneous between-and within-subject variability; i.e., �2

Bj = �2
B� �

2
Wj = �2

W both
E�ÎCC1� and E�ÎCC2� are increasing functions of K. E�ÎCC1� starts with a value
that may be less or greater than the CCC at K = 1 and increases quickly to the limit
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(as K → �) that exceeds the CCC. E�ÎCC2� equals the CCC at K = 1 and increases
quickly to the limit (as K → �) that also exceeds the CCC.

Note that even in the case of E�ÎCC� = CCC under the general model, we may
still have ĈCC ≤ ÎCC, because the plug-in estimator of CCC, ĈCC, is biased due
to a biased estimation of ��j − �j′�

2 via �Y•j• − Y•j′•�2 (Carrasco and Jover, 2003a;
Nickerson, 1997). We have ĈCC = ÎCC only if a bias correction term is used for
estimating ��j − �j′�

2 in the CCC.

3.3.3. Coefficient of individual agreement. The CCC is known to depend
on between-subject variability that may result from the fact that it is scaled
relative to the maximum disagreement defined as the expected squared difference
under independence. Barnhart and colleagues (Barnhart et al., 2007a; Haber and
Barnhart, 2007) began looking for a scaled agreement index, the coefficient of
individual agreement (CIA), which is scaled relative to the minimum or acceptable
disagreement, with the goal of establishing interchangeability of observers. Before
considering observers for comparison, one must assume that the replication errors of
the observers are acceptable. This is especially true for the reference observer. Thus,
they used the disagreement between replicated measurements within an observer as
a yardstick for acceptable disagreement. Intuitively, interchangeability is established
only if individual measurements from different observers are similar to replicated
measurements of the same observer. In other words, the individual difference
between measurements from different observers is relatively small, so that this
difference is close to the difference of replicated measurements within an observer.
This concept of individual agreement is closely linked to the concept of individual
bioequivalence in bioequivalence studies (Anderson and Hauck, 1990, Schall and
Luus, 1993).

Replicated measurements by observers are needed for the CIAs for the
purpose of estimation and inference only. Regardless of the number of replications,
CIAs assesses agreement between observers when each observer evaluates each
subject only once. The coefficients are intended to be used to decide whether a single
measurement made by one observer can be replaced by a single measurement made
by another observer in practice, when each subject is evaluated only once by each
observer. Let Yijk = �ij + �ijk with the assumptions in Section 3.1. Barnhart et al.
(2007a) defined the CIAs for cases of no reference observer and the J th observer as
a reference with

CIAN = �N =
∑J

j=1 E�Yijk − Yijk′�
2/2∑J−1

j=1

∑J
j′=j+1 E��Yijk − Yij′k′�

2�/�J − 1�
�where k 
= k′�

=
∑J−1

j=1

∑J
j′=j+1��

2
Wj + �2

Wj′�∑J−1
j=1

∑J
j′=j+1

[
2�1− ��jj′��Bj�Bj′ + ��j − �j′�

2 + ��Bj − �Bj′�
2

+�2
Wj + �2

Wj′
]

CIAR = �R = E�YiJk − YiJk′�
2/2∑J−1

j=1 E��Yijk − YiJk′�
2�/�J − 1�

�where k 
= k′�

= �2
WJ∑J−1

j=1

[
2�1− ��jJ ��Bj�BJ + ��j − �J�

2 + ��Bj − �BJ �
2 + �2

Wj + �2
WJ

] �
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respectively. These are the CIAs when the MSD function is used as a disagreement
function. For J = 2, Haber and Barnhart (2007) extended the CIAs to the general
disagreement function and illustrated the methodology with various disagreement
functions. Barnhart et al. (2007a) showed that there are one-to-one relationships
between the CIAN and the two previously proposed agreement indices by Haber
et al. (2005) and Shao and Zhong (2004).

Estimates of CIAs can be obtained by the method of moment and can be
computed through several ANOVA models (Barnhart et al., 2007a). Barnhart et al.
(2007a) proposed a nonparametric approach for inference and showed that the
nonparametric approach is similar to the bootstrap approach. This nonparametric
approach is also similar to the U-statistics used by King and Chinchilli (2001a) for
the CCCs.

3.3.3.1. Comparison of CIA and CCC. Barnhart et al. (2007b) compared
the CCC and the CIA for data with replications when there is no reference observer.
To highlight the similarities and differences of the two coefficients, we assume that
there are only two observers and that �2

B1 = �2
B2 = �2

B and �2
W1 = �2

W2 = �2
W . We can

write both coefficients in terms of the difference of the means ��1 − �2�, the between-
and within-subjects variances, and the correlation coefficient ���12�. The total CCC
and the CIA for the case of no reference can be written as:

�c =
2�2

B��12

��1 − �2�
2 + 2��2

B + �2
W�

� �N = 2�2
W

��1 − �2�
2 + 2�1− ��12��

2
B + 2�2

W

�

Hence, both coefficients increase as the correlation increases and decrease as the
overall location shift increases. The CCC increases when the between-subjects
variability increases and the within- subjects variability decreases. The CIA, on the
other hand, increases when the within-subjects variability increases and the between-
subjects variability decreases. However, Barnhart and colleagues found that the CIA
is less dependent than the CCC on the relative magnitude, �2

B/�
2
W , of the between-

and within-subjects variability. In general, the CCC and the CIA are related as

�N = �c/��1− �c����

where � = 2�B1�B2��12/��
2
W1 + �2

W2�.
These properties of the CCC and the CIA continue to apply when there are

more than two observers, none of whom is considered as a reference. Comparison
of a new CCC (where one observer is the reference) to the corresponding CIA (with
the same observer as a reference) leads to the same conclusion as the comparison of
the ordinary CCC with the CIA when there is no reference observer.

3.3.4. Dependability coefficient and generalizability coefficient.
Generalizability theory (GT) extends the concept of reliability based on classical
theory (CT) to account for various sources of variability and different kinds
of decisions. We first introduce the CT that defines the traditional reliability
coefficient, followed by a single-facet design and a multi-facet design in GT, where
we discuss the definition of dependability coefficient and generalizability coefficient.

In CT, an observation is decomposed as the sum of the subject’s true score,
plus the random measurement error. In the simple case that an observation is made
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by an observer, let Yij be the observations made by the jth observer on subject i.
Then, the one-way ANOVA model Yij = �i + �ij = � + 	i + �ij is used in CT, where
observations Yij are assumed to be parallel (see Section 2.3 under reliability). The
reliability is defined as ICC1 (see Section 3.3.1) and can be viewed either as the ratio
of the true score variance �Var��i� = �2

	� over the observed variance �Var�Yij� =
�2
	 + �2

�� or as correlation Corr�Yij� Yij′�.
In GT, the assumption of parallel observations is relaxed by decomposing

an observation as sum of subject’s universe score and the multiple sources of
components that contribute to the variability of the observed value, where the
universe score is similar to the concept of true score in CT. The subject is usually
called the facet of differentiation or the object (facet) of measurement and the
components are called facets of generalization. The levels of facets of generalization
are called conditions. The universe is defined as all observations made under all
conditions of the facets of generalization. The universe score is the average of all
possible (usually infinite) observations in the universe, similar to the true score
in CT. The simplest case is the single facet design, where the observer is the
only facet of generalization. The universe is all observations made by all (possibly
infinite) observers, and the universe score is the average of these observations.
GT consists of generalization studies (G-studies) and decision studies (D-studies),
where G-studies investigate the variance components due to facets of differentiation
and facets of generalization, while D-studies investigate various designs based on
particular decisions. In general, one G-study is planned to include all possible facets
of generalization (i.e., sources of possible variabilities), while multiple D-studies
can be formulated by considering the variance components obtained from a single
G-study in various ways.

One key convention in GT is that all facets of generalization are considered
as random effects. Thus, the observer is treated as random and the GT extends the
reliability concept in Section 3.3.1 for the case of the random observer only. Fixed
facets of generalization are discussed in Molenberghs et al. (2007).

Let Yijk be the kth replication �k = 1� � � � � K� made by observer j on subject i.
Usually, K = 1 in the GT, but we allow general K for comparison with the reliability
concept in Section 3.3.1 that includes both K = 1 and K > 1. In a single-facet study,
the G-study may consider the following three random effect models: (1) Yijk = � +
	i + �ijk; (2) Yijk = � + 	i + 
j + �ijk; and (3) Yijk = � + 	i + 
j + �	
�ij + �ijk, where
�i = � + 	i is the universe score. Model (1) is usually not considered in a G-study
because the observer is recognized as a facet and thus should always be considered
as a factor in the ANOVA model. In general, the G-study uses model (2) if there
are no replications and model (3) if there are replications. We include all three
models for comparison with the ICCs. The G-study uses these ANOVA models to
estimate and perform inference on variance components of Var��i� = �2

	� Var�
j� =
�2

� Var�	
ij� = �2

	
� Var��ij� = �2
� due to facet of differentiation (subject) and facets

of generalization (observer and replication), respectively.
In D-studies, one must decide (1) whether the decision is absolute or relative

and (2) whether a single observation, or average of several observations of a subject,
is used in practice. An absolute decision is concerned with obtaining the estimate of a
subject’s universe score regardless of another subject’s universe score while relative
decision is concerned with rank-ordering subjects. Thus, the absolute decision is
relevant to absolute agreement considered in this paper, while the relative decision
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is relevant to consistency agreement, such as ICC, for consistency. As mentioned in
the begining of Section 3.1, we only consider the case that a single observation will
be used in practice. Therefore, we focus our attention on the D-study with absolute
decision, with the purpose of using a single observation in practice. Coefficients that
depend on relative decision with the purpose of using a single observation in practice
are mentioned here for contrast. Based on the absolute decision, dependability
coefficient (DC) is defined as

�DC = variance of universe score based on facet of differentiation
variance of universe score + variance of absolute error

�

Based on the relative decision, generalizability coefficient (GC) is defined as

�GC = variance of universe score based on facet of differentiation
variance of universe score + relative error

�

In the single-facet design, the universe score for subject i is �i = � + 	i, and
the absolute error ��ijk� is the difference between the observed score and the
universe score, �ijk = Yijk − �i. The relative error (�ijk� is defined as the difference
of the subject’s observed deviation score �Yijk − E�Yijk � j� k� = Yijk − � − 
j� and the
universe deviation score ��i − ��, thus �ijk = Yijk − �i − 
j . Intuitively, the relative
error does not contain the observer effect, because this effect does not affect the
subject’s ranking. Table 1 shows the dependability coefficient and generalizability
coefficient based on the three different ANOVA models. It can be shown that �DC =
corr�Yijk� Yij′k′� and �GC = corr�Yijk� Yij′k′ � j� j′� k� k′�, where j 
= j′� k 
= k′ for all three
models (Molenberghs et al., 2007). Thus, the DC can be interpreted as correlation
and the GC can be interpreted as conditional correlation.

Molenberghs et al. (2007) also considered the single-facet design with a fixed
observer and the facet of generalization as the replication. One may consider
separate ANOVA models to obtain DC and GC for each observer; however, if
model (3) is used, the DC and GC for each observer is the same and equal to

�test−retest = corr�Yijk� Yijk′ � j� = corr�Yijk� Yijk′ � j� k� k′� =
�2
	 + �2

�	
�

�2
	 + �2

�	
� + �2
�

that is considered as test–retest reliability, which is the same as the intra-CCC by
Lin et al. (2007).

Table 1 Dependability and Generalizability Coefficients for one-facet design

D-study coefficients

G-study models �DC �GC Relation with ICC

(1) Yijk = � + 	i + �ijk
�2
	

�2
	 + �2

�

�2
	

�2
	 + �2

�

�DC = �GC = ICC1

(2) Yijk = � + 	i + 
j + �ijk
�2
	

�2
	 + �2


 + �2
�

�2
	

�2
	 + �2

�

�DC = ICC2� �GC = ICC1

(3) Yijk = � + 	i + 
j + 	
ij + �ijk
�2
	

�2
	 + �2


 + �2
	
 + �2

�

�2
	

�2
	 + �2

	
 + �2
�

�DC = ICC3� �GC = ICC3c
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It is now easy to extend the single-facet design to the multifacet design. For
illustration, let Yijtc denote the observation made by observer j at time t on subject i,
with covariate value c. The facets of generalization are observer, time, and covariate.
The G-study decomposes Yijtc as the sum of various sources of variability with model
(4) below:

�4� Yijtc = � + 	i + 
j + �t + �c + �	
�ij + �	��it + �	��ic

+ �
��jt + �
��jc + ����tc + �	
��ijt + �	
��ijc + �	���itc + �
���jtc + �ijtc

The DC and GC from the D-studies with absolute and relative errors are

�DC = �2
	

�2
	 + �2


 + �2
� + �2

� + �2
�	
� + �2

�
�� + �2
���� + ��	���2 + �2

�
��� + �2
�

�GC = �2
	

�2
	 + �2

�	
� + �2
�	��� + �2

�

�

respectively. One should note that these coefficients now assess interchangeability
for the measurements by different observers at different time points and different
covariate conditions, not only for interchangeability of the observers.

Other DCs or GCs may be formed if we consider different facets of
differentiation other than subject; e.g., subject-by-country, or subject-by-observer.
Vangeneugden et al. (2005) and Molenberghs et al. (2007) extended the concepts of
ICC and GT to longitudinal data in the framework of a linear mixed-effect model
with and without serial correlation. The mixed effect model allows for adjustment
of fixed effects from covariates such as treatment. In their framework, both the ICC
and DC are expressed as correlations, while the GC is expressed as a conditional
correlation. In the simple case where Yijt is the observation made by observer j on
subject i at time t, the mixed model is Yijt = � + 	i + 
j + �	
�ij + �it + �ijt, where
�it accounts for serial correlation. They first defined ICC as ICC = corr�Yijt� Yijt′�
for test–retest reliability and then defined three DCs and three GCs for overall, test-
retest, and inter-rater respectively as

�DC = corr�Yijt� Yij′t′�� �GC = corr�Yijt� Yij′t′ � j� j′� t� t′�
PDC�test-retest = corr�Yijt� Yijt′�� �GC�test-retest = corr�Yijt� Yijt′ � j� t� t′�
�DC�inter-rater = corr�Yijt� Yij′t�� �GC�inter-rater = corr�Yijt� Yij′t � j� j′� t��

If the repeated measurements are treated as replicated measurements by setting
�it = 0 in the model, then �DC = �DC�inter-rater . Furthermore, �DC and �DC�test-retest
correspond to the total CCC and intra-CCC, respectively, if we set �2


 =
∑J

j=1��j −
�•�2/�J − 1�. For data with repeated measures, �DC�inter-rater has an interpretation
similar to the CCCD by King et al. (2007a) with corresponding D matrix. We should
point out that the models used in GT assume the same between-subject variability,
while the CCC allows separate between-subject variability for each observer.

In summary, GT provides a flexible way to investigate interchangeability of
levels in more than one factor (such as observer). However, the DC shares the
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same property as the ICC and CCC, in that its value increases as the between-
subject variability increases. Thus, one cannot compare the coefficients formed from
different G-studies where the populations differ greatly.

3.3.5. Comments. In summary, the scaled agreement indices of ICC, CCC,
CIA, and DC are all standardized to have values between −1 and 1. The ICC, CCC,
and DC are related and depend on between-subject variability and may produce
high values for heterogeneous populations (Atkinson and Nevill, 1997; Bland and
Altman, 1990). The ICC can accomodate multiple fixed and random observers, but
is not suited for cases with a reference observer or for data with repeated measures,
without additional assumptions. The CCC is mainly developed for fixed observers
and reduces to the ICC for fixed observers under additional assumptions. The CCC
formulation may be used for the case with random observers, but additional care
is needed for inference. The DC is an extension of the ICC for random observers
that can be used for situations with multiple factors, and for data with repeated
measurements. There has been limited development of the DC for fixed observers;
nothing has been developed for the case with a reference observer. The CIA is
fundamentally different from the ICC, CCC, and DC because it uses within-subject,
rather than between-subject, variability as the scaling factor. It is possible to have
high ICC/CCC/DC value and low CIA value (and vice versa) from the same data
set. See Barnhart et al. (2007b) for additional details.

4. DISCUSSION

We have reviewed the concepts and statistical approaches for assessing
agreement with continuous measurements based on classification of (1) descriptive
tools, (2) unscaled indices, and (3) scaled indices. An alternative classification
used in individual bioequivalence literature (Chen, 1997) also may be considered:
(1) aggregated criteria, (2) disaggregated criteria, and (3) probability criteria. The
classification of aggregated criteria is based on an index that combines different
sources of possible disagreement among observers. Sources of disagreement may
arise from differing population means, differing between-subject variances, differing
within-subject variances among observers, poor correlation between measurements
made by observers, and large subject-by-observer interaction. Disaggregated criteria
examine these various possible sources of disagreement separately (see Lee et al.,
1989). Except for the CP and TDI, which are based on probability criteria, all
other indices reviewed here are aggregated indices. Our descriptive tools are intuitive
approaches to disaggregated criteria. As pointed out by Chen (1997), aggregated
criteria have the advantage of balancing different sources of disagreement while
disaggregated criteria may have the advantage of identifying the actual source of
disagreement if the agreement is not satisfactory. However, disaggregated criteria
may encounter the problem of multiple testing if the criteria do not use one
procedure to test multiple hypotheses together. We did not review disaggregated
criteria for assessing agreement that takes into account multiple testing; readers are
instead directed to the literature that were based on the intersection–union principle
(Carrasco and Jover, 2003b, 2005a; Choudhary and Nagaraja, 2005a) or other single
procedures (Bartko, 1994).
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We summarize here the unscaled (Table 2) and scaled (Table 3) agreement
indices according to whether there is an existing method for different types of data
structure. The tables indicate that future research is needed for agreement indices
where there are repeated measures, covariates, and the existence of a reference
observer. Furthermore, most methodologies were developed for fixed observers;
thus, further research is needed for the case of random observers. The case of
random observers should be considered if different observers from a pool of
observers, rather than the same limited observers, are used in practice or in research.
Recently, Barnhart et al. (2005b) used the CCC index and Choudhary (2007a) used
the CP and TDI indices to assess agreement of measurements subject to censoring
due to the limit of detection. Ying and Manatunga (2007) and Liu et al. (2005)
used the CCC index to assess agreement of time measurements that are subject to
censoring, with nonparametric and parametric estimation approaches, respectively.
Clearly, further research is needed to understand assessing agreement for censored
data. King and Chinchilli (2001b) proposed robust estimators of CCC to reduce the
influence of outliers and Carrasco et al. (2007) evaluated performance of various
estimators of CCC with skewed data. More research is also needed for assessing
agreement with data containing outliers.

Unscaled indices have the advantage of interpretation based on the original
unit, but it may prove difficult to ascertain the limit for acceptable agreement
without sufficient knowledge of the measurement variable and measurement unit.
Scaled indices have the advantage of judging the degree of agreement based on
standardized value, but the agreement values may not be compared across very
different populations, and sometime artificially high or low agreement values may
be obtained due to the dependence of these indices (except the CIA) on between-
subject variability. If there are only two observers �J = 2�, we note that there is

Table 2 Existing methods (Yes, No) for unscaled agreement indices comparing between or within J

observers under different data structures

Data structure

No replications Replications Repeated measures

Index J = 2 J > 2 J = 2 J > 2 J = 2 J > 2 Covariates

No reference observer
MSD Yes Yes Yes Yes No No No
Repeatability NA NA Yes Yes Yes No Yes
Reproducibility Yes Yes Yes Yes No No No
LOA Yes No Yes No Yes No Yes
CP Yes Yes Yes Yes Yes No No
TDI Yes Yes Yes Yes Yes No Yes

With reference observer
MSD Yes No Yes No No No No
Repeatability NA NA Yes Yes No No No
Reproducibility Yes No Yes No No No No
LOA Yes No Yes No Yes No No
CP Yes No Yes No No No No
TDI Yes No Yes No No No No
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Table 3 Existing methods (Yes, No) for scaled agreement indices comparing between or
within J observers under different data structures

Data structure

No Replications Replications Repeated measures

Index J = 2 J > 2 J = 2 J > 2 J = 2 J > 2 Covariates

No reference observer

ICC Yes Yes Yes Yes Yes Yes No
CCC Yes Yes Yes Yes Yes No Yes
CIA NA NA Yes Yes No No No
DC Yes Yes Yes Yes Yes Yes No

With reference observer

ICC No No No No No No No
CCC Yes Yes Yes Yes No No No
CIA NA NA Yes Yes No No No
DC No No No No No No No

no difference between cases with and without reference observers for most indices,
except for CIA (which may be the strength of this index).

If there is a reference observer, agreement indices assess validity. Otherwise,
they assess agreement only. It is thus possible that there may be high agreement
between observers, but they may agree to the wrong quantity when there is no
reference observer or observed true value for comparison. If the focus is not on
agreement, but on the relationship between the observed measurements with the true
value, the reader is directed to the literature by Lin et al. (2002), where the true
value is observed without random error, and to literature on statistical evaluation
of measurement errors in method comparison studies (see references in Dunn, 2004)
where the true value is observed with random error. Often, the investigation of
such a relationship involves assumption of linearity (e.g., in a calibration problem)
and/or existence of an instrumental variable (Dunn, 2007; Dunn and Roberts, 1999)
that may be difficult to verify in practice. If we believe the assumption of such
a linear relationship, one may use disaggregated criteria to test whether there is
satisfactory agreement between observers. This approach for assessing agreement
may be based on structural equations (latent variables) models (Carrasco and Jover,
2003b, 2005a; Dunn, 1989, 2004; Hawkins, 2002; Kelly, 1985) or a confirmatory
factor model (Dunn, 1989, 2004).

For example, under the general model of Yijk = �ij + �ijk with the J th observer
as the reference observer, it is often assumed that �ij = 	+ 
�iJ in the structural
equations approach. This implies assumptions of �j = 	+ 
�J and �2

Bj = 
2�2
BJ .

In general, �2
Bj = 
2�2

BJ is usually not required in addition to �j = 	+ 
�J in the
aggregated approach for assessing agreement. Another similar approach can be
found in St. Laurent (1998) and Harris et al. (2001). For illustration, let the J th
observer be a reference or gold standard with measurement error. St. Laurent
(1998) used the model, Yij = YiJ + �ij , to construct an agreement index defined as
�j�g =

√
corr�Yij� YiJ � = Var�YiJ �/�Var�YiJ �+ Var��ij��, where g stands for the gold

standard method. Under this model, it can be shown that the pairwise CCC is
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�c�jJ = 2Var�YiJ �/�2Var�YiJ �+ Var��ij�� = 2�jg/�2�jg + 1� ≥ �jg. The formulation of
�jg is similar to ICC1 by treating YiJ as �i. If we accept the additive assumption in the
model Yij = YiJ + �ij , the correlation of the observations between the new observer
and the reference observer may be used as an alternative agreement index that
extends ICC/CCC/DC to the case with a reference observer. If there are multiple
observers with one reference observer, one may be also interested in selecting the
best observer as compared to the reference observer (Choudhary and Nagaraja,
2005b,c; Hutson et al., 1998; St. Laurent, 1998). If there are J > 2 observers and
there is no reference, one may be also interested in looking at pairwise agreement
between any two observers, especially if the overall agreement is not satisfactory.
Furthermore, one may be interested in selecting subgroup of observers who agree
well with each other.

Other scaled agreement indices include the within-subject coefficient of
variation (Hui and Shih, 1996) and � coefficients proposed by Zhong and Shao
(2003) and Shao and Zhong (2004). These indices are not scaled to be between −1
and 1. The within-subject coefficient of variation is repeatability scaled by the mean,
rather than between-subject variability. Shao and Zhong (2004) showed that the
two �s are related and the � coefficient by Shao and Zhong (2004) has a one-to-
one correspondence with the CIA index as shown by Barnhart et al. (2007a). As
mentioned in Section 3.3.2, the RMAC proposed by Fay (2005) is closely related to
E�ÎCC1� under the general model. There is also a different version of CCC (Liao,
2003, 2005) based on the concept of area rather than distance.

One implicit assumption among existing methods is that the between- and
within-subject variabilities are reasonably stable across the range of measurements.
It may be of interest to examine the index’s dependency on the magnitude of the
true value. Without observed true value, one may examine the indices’ dependency
on the average magnitude of the observed measurements from the same subject (see
Bland and Altman plot, Bland and Altman, 1999).

Sometimes measurement methods or tools are developed to measure more
than one variable; e.g., systolic and diastolic blood pressure, multiple characteristics
of psychology and psychiatry profiles, multiple outputs of imaging scans, etc. There
is a multivariate generalizability theory for multivariate data, where DC or GC
indices are aggregated over multiple outcome variables (Brennan, 2001). However,
the research on agreement for multivariate data is very limited (see Konishi et al.,
1991 for multivariate ICC in genetic study, and Janson and Olsson (2001, 2004) for
multivariate CCC in the context of education and psychology). There is a great need
for further development in this area.

Sample size calculations for agreement studies have been proposed for indices
of ICC (Donner, 1998; Shoukri et al., 2004), CCC (Lin, 1992; Lin et al., 2002), LOA
(Lin et al., 1998), and CP or TDI (Choudhary and Nagaraja, 2007; Lin et al., 2007).
Futher research is needed in the design of agreement studies.

Disagreement between observers will have an effect on the design of clinical
trials if the measurements of the observers are used as outcomes. Fleiss (1986)
examined the inflation of sample size for a two-arm parallel clinical trial if there
is only random measurement error (imprecision), as assessed by ICC1. Further
research is needed to examine the impact of disagreement on the design of clinical
trials where there are both systematic and random measurement errors in the
outcome measurements.
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In this paper, we have reviewed only the indices for assessing agreement with
continuous measurements. Parallel indices were developed for assessing agreement
with categorical measurements. For example, Cohen’s kappa for binary data and
weighted kappa for ordinal data correspond to the CCC for continuous data, and
intraclass kappa for ordinal data corresponds to the CCC and ICC1 (Fleiss and
Cohen, 1973; Krippendorff, 1970; Robieson, 1999). Carrasco and Jover (2005b)
developed the CCC for count data through the ICC from a generalized linear mixed
model. Lin et al. (2007) provided a unified approach to defining total CCC, inter-
CCC, and intra-CCC for continuous, binary, or ordinal data. King and Chinchilli
(2001a, 2007b) proposed a class of CCC index for continuous or categorical data,
including repeated measures. There is also a CIA index, which has been developed
for binary data (Haber et al., 2007). Raghavachari (2004) proposed a new measure
of agreement for assessing agreement in ratings and rank-order data similar to
Kendall’s (1948) measure of concordance for ranked-order data. Molenberghs et al.
(2007) used generalized linear mixed models to define reliability and generalizability
for both continuous and categorical data. We will review the agreement indices for
categorical data in the future.

In summary, future research on assessing agreement should be focused on

• Indices for data with repeated measurements, censoring, outliers, and covariates
• Indices for the case of random observers
• Indices for the case with existence of reference
• Investigation of indices’ dependency on the range of measurements
• Indices for multivariate data
• Sample size calculation for design of agreement study
• Impact of disagreement on design of clinical trials
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