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SUMMARY. Accurate and precise measurement is an important component of any proper study design. 
As elaborated by Lin (1989, Biometrics 45, 255-268), the concordance correlation coefficient (CCC) is 
more appropriate than other indices for measuring agreement when the variable of interest is continuous. 
However, this agreement index is defined in the context of comparing two fixed observers. In order to use 
multiple observers in a study involving large numbers of subjects, there is a need to assess agreement among 
these multiple observers. In this article, we present an overall CCC (OCCC) in terms of the interobserver 
variability for assessing agreement among multiple fixed observers. The OCCC turns out to be equivalent 
to the generalized CCC (King and Chinchilli, 2001, Statistics in Medicine 20, 2131-2147; Lin, 1989; Lin, 
2000, Biometrics 56, 324-325) when the squared distance function is used. We evaluated the OCCC through 
generalized estimating equations (Barnhart and Williamson, 2001, Biometrics 57, 931-940) and U-statistics 
(King and Chinchilli, 2001) for inference. This article offers the following important points. First, it addresses 
the precision and accuracy indices as components of the OCCC. Second, it clarifies that the OCCC is the 
weighted average of all pairwise CCCs. Third, it is intuitively defined in terms of interobserver variability. 
Fourth, the inference approaches of GEE and the U-statistics are compared via simulations for small samples. 
Fifth, we illustrate the use of the OCCC by two medical examples with the GEE, U-statistics, and bootstrap 
approaches. 
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1. Introduction 

In health care practice, clinical measurements serve as a ba- 
sis for diagnostic, prognostic, and therapeutic evaluations. As 
technology continues to advance, new methods/instruments 
for diagnostic, prognostic, and therapeutic evaluations be- 
come available. Before a new method or a new instrument 
is adopted for use in measuring a variable of interest, one 
needs to ensure the accuracy and precision of the measure- 
ment. Often, a reliability or a validity study involving mul- 
tiple observers is conducted in clinical or experimental set- 
tings. If the outcome variable is continuous, Lin (1989, 1992) 
stated that the appropriate index for measuring agreement be- 
tween two observers is the concordance correlation coefficient 
(CCC). Lin (1989) argued that, even though the agreement is 
often evaluated by using the Pearson correlation coefficient, 
the paired t-test, the least square analysis of slope (=1) and 
intercept (=0), the coefficient of variation, or the intraclass 
correlation coefficient, none of these can fully assess the de- 
sired reproducibility characteristics. The Pearson correlation 
coefficient only measures precision of a linear relationship, not 
accuracy. Both the paired t-test and least squares analysis can 
falsely reject (accept) the hypothesis of high agreement when 
the residual error is very small (large). The coefficient of vari- 
ation and the intraclass correlation coefficient often assume 

that the two readings by two observers are interchangeable. 
The advantage of CCC is that this index is based on the differ- 
ences between the observations made by two observers on the 
same subject, and thus it evaluates the agreement between 
two readings by measuring the variation from the 450 line 
through the origin. The CCC has good intuitive interpreta- 
tion because it includes components of both precision (degree 
of variation) and accuracy (degree of location or scale shift). 

Use of the CCC as a measure of reproducibility has gained 
popularity in practice since its introduction by Lin (1989). 
However, this agreement index is defined in the context of 
comparing two fixed observers. Because the reliability and 
validity studies often involve more than two observers, espe- 
cially for studies with large numbers of subjects, there is a 
need to assess agreement among multiple observers. In this 
article, we present an overall CCC (OCCC) in terms of the 
interobserver variability for assessing agreement among mul- 
tiple fixed observers. The OCCC turns out to be equivalent 
to the generalized CCC (Lin, 1989, 2000; King and Chinchilli, 
2001) when the squared distance function is used. We eval- 
uated the OCCC through generalized estimating equations 
(Barnhart and Williamson, 2001) and U-statistics (King and 
Chinchilli, 2001) for inference. In Section 2, we give our def- 
inition of this index and examine its properties in compar- 
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ison with the extended concordance correlation coefficient. 
We propose an alternative approach, generalized estimating 
equations (GEE) (Barnhart and Williamson, 2001), to con- 
duct inference on the OCCC in Section 3. Simulation studies 
are performed in Section 4 to compare the proposed GEE ap- 
proach with the U-statistics approach by King and Chinchilli 
(2001). We illustrate the use of the OCCC and compare the 
GEE, U-statistics, and bootstrap inference approaches by us- 
ing two medical examples in Section 5. A short discussion is 
presented in Section 6. 

2. Overall Concordance Correlation Coefficient 

Suppose that each of J observers assesses each of N sub- 
jects (a random sample from a population of interest) with 
a continuous scale Y. Let Y1,...,Yj be the readings from 
the J fixed observers for a randomly selected subject. For 
two observers, say the jth and kth observers, the concor- 
dance correlation coefficient (CCC) introduced by Lin (1989) 
is defined by the following scaled expected squared difference 
E P(Yj {(-k)2), 

c ~ ~~~~~ E(Yj Ok)2} 
13k TC E { (Yj - yk) 2 I Yj, Yk are uncorrelated} 

2ajk =PjX a 

? ?2 + k + (tLj -hLk)2 PjkXjk, 

where 1 = E(Yj), ~ik = E(Yk), ~aj = var(Yj), ak = var(Yk), 
and ajk = cov(Yj,Yk) = 0akPjjk. The CCC is a product of 
two components, precision (Pjk) and accuracy (X k), where 

Xk = 2ajak/{ + 
2 

+ (11j - kk)2} = {(vjk + l/vjk + 

ujk)/2}1, with Vjk = aj/ak representing scale shift and 
Ujk = (aj - 1k)/(ajak)1/2 representing location shift relative 
to the scale. Note that Pck = Pjk if and only if ILj = ilk and 

'k* In general, we have -1 <-IPjkI < P~c < IPjkl < 1 

and Pjck = 1 if and only if 1Lj = 1lk, O7i = ak, and Pjk=1. 
Because it is intuitive to use the squared difference to de- 

scribe the disagreement between readings from two observers, 
it is natural to use interobserver sample variability, V - 

.Efr1 (1? _ Y)2/(J _ 1), where Y. is the arithmetic mean, 
in place of the squared difference to describe the variability 
among readings from multiple observers. We propose an in- 
dex, the overall concordance correlation coefficient (OCCC), 
for measuring agreement among multiple observers by scaling 
the expected interobserver variability to be between -1 and 
1. The OCCC is defined as 

c E(V) 
E(V I Y1,... , YJ are uncorrelated) 

Note that, when J = 2, we have pC = PC2* Thus, the OCCC 
is a natural extension of the CCC. We derive relationships 
between the OCCC and the pairwise CCC and between the 
OCCC and the moments of the Yj's. First, note that we can 
write V as a linear combination of all pairwise squared dif- 
ferences, V = J-'=j+ (EJ -Yk)2/{J(J - 1)}. Thus, we 
have 

{ZJ-1 J Y 

pc=1-E<E E (yj _ yk2 
PO~ ~~_ 

E 

_ 1 1 

* E{ Z (1ji-Yk)2 
j=l k=j+l 

Y1,... ,Yj are uncorrelated} (1) 

J-1 J 

E E (jkPjk 
j=1 k=j+l (2) 

J-1 J 

j=1 k=j+l 

where (jk = E{(Yj - Yk)2 I Y1,. . ,Yj are uncorrelated} = 

(i's -I'k)2 +aj2 +o2. Therefore, the OCCC can be interpreted 
as a weighted average of all pairwise CCCs with weights (jk'Sl 
where higher weights are given to the pairs of observers whose 
readings have higher variances and larger mean differences. 
This makes intuitive sense as the pairs of observers are penal- 
ized proportionally by the disagreement due to their variances 
and the squared mean difference. Second, we can also rewrite 
the OCCC as a function of means, variances, and covariances 
as 

J-1 J 
2 E E Ojk 

c j=1 k=j+l 
PO = J J 

(J-1)E aj2+ J j_ )2 

j=1 j=1 

J-1 + 
2 E E aj k 

j=l k=j+l 
J J-1 J 

(J-1)E ?+E E (lj-Ak)2 
j=1 j=1 k=j+l 

If we rewrite the pairwise CCCs as products of precision and 
accuracy, we have from (2) that 

J-1 i 

5 jkPjkXjk 
c j=1 k=j+l 

PO J-1 i 

E E (jk 
j=1 k=j+l 

Furthermore, if we assume Pjk = p for all j and k (i.e., same 
precision for every pair of observers), then the OCCC can 
be expressed as a product of precision and overall accuracy, 

C = a 
Po = PX Iwith 

J-1 i 

5 jkX3k 
a j=l k=j+l 
X J-1 + 

E E (jk 
j=l k=j+l 

It turns out that the proposed OCCC is the same as the 
index suggested by Lin (1989) in the section of future stud- 
ies with correction of typographical errors (Lin, 2000). This 
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index is also equivalent to the extended concordance corre- 
lation coefficient proposed independently by King and Chin- 
chilli (2001) when a squared distance function is used. Their 
index is based on the square difference of all possible pairs, 
but they did not examine any properties of their index. We 
note that the OCCC defined in this article offers three impor- 
tant insights. First, it addresses the precision and accuracy 
indices as components of the OCCC. Second, it clarifies that 
the OCCC is the weighted average of pairwise CCCs. Third, 
it is intuitively defined in terms of interobserver variability. 
Lin (1989) did not provide inference information regarding 
this index. King and Chinchilli (2001) proposed an inference 
approach based on U-statistics. However, they did not per- 
form simulation studies for this index nor did they provide 
an example of application of the index. In the next section, 
we propose two alternative approaches, generalized estimat- 
ing equations (GEE) and bootstrap, for inference. We eval- 
uate the OCCC through simulation studies in Section 4 to 
compare the GEE approach to the U-statistics approach. We 
then compare the GEE, the U-statistics, and the bootstrap 
approaches using two medical examples in Section 5. 

To better understand the OCCC index, we also derive sim- 
ple expressions for p' in special cases. First, the OCCC is 
the same as the correlation coefficient if and only if l~j = IL, 
aj2 = 2 and -jk = O2p for all j and k. Second, under homo- 
geneity assumptions of o,2 = 0.2 and Pjk =p for all j and k, 
we have 

Po = J =+ PX - 

j=1 

where Xa = U2/IU2 + EJ=1 (Aj ji.)2/(J -1)}. In this 
case, the OCCC is the ratio of the variance multiplied by 
the correlation to the sum of the variance and the expected 
interobserver variability (Esf1 (Aj -_ Ai)2/(J - 1)). Third, if 
we assume a two-way analysis of variance (ANOVA) model 
without interaction for the observed readings, we can write 
Yij = IL + ai + /j + eij, where Yij is the reading from observer 
j for subject i, i = 1, ... , N. The common assumptions for the 
two-way ANOVA model are that (a) ai's are i.i.d. with mean 
zero and variance a2, (b) 3j's are fixed with EJf/13~ = 0, 
(c) eij's are i.i.d. with mean zero and variance ael and (d) 
ai and eij are mutually independent. Under these assump- 
tions, we have E{ZE1 (Ye3-yi.)2} = 

and EJ{EJ1 (Yi . - yi)2 | Yij are independent} = Ezf ,j + 
(J-_ 1)2 + (J-_ 1)2. Thus, we have 

2 

Po J 

as + E?3 /(J- 1) + ?e 
j=1 

In this case, the OCCC is the same as the intraclass corre- 
lation coefficient for assessing observer agreement under the 
same two-way model (see Case 3A in the article by McGraw 
and Wong (1996)), i.e., it is equal to the proportion of sub- 
ject variability (U2) over the sum of subject variability, inter- 
observer variability (E _1 /3?/(J - 1)), and error variability. 

We note that other versions of intraclass correlation coeffi- 
cients do not include the interobserver variability (Sf-l 23j/ 
(J - 1)) in the denominator (Bartko, 1966). 

3. Estimation and Inference 
Let Yij be the reading from observer j for subject i,i = 

1, ... , N. Estimation for the OCCC can be accomplished by 
the method of moments. Specifically, the OCCC is esti- 
mated by 

J-1 J 

S E fjkPjk 
=c j=l k=j+l 

0 J-1 J 3 

E E Zjk 
j=l k=j+l 

where (jk = (Y. -Y.k )2+S +Sk and ijck = 2k k/{S+Sk+ 
(Y.j - Y.k)2}, with Y.j's, Sj's, and Sjk's as sample means, 
variances, and covariances, respectively. The expression for 
fi can also be rewritten in terms of sample means, variances, 
and covariances as 

J-1 J 
2 1: 1 S3 k 

pc j=l k=j+l (4) 
J 

(J-)Sj +J~si3 .)2 
j=l j=l 

We now turn to the estimation of the standard error of 
io. Note that numerous assessments (J readings by the J 
observers) are made on the same subject and these mea- 
surements will tend to be positively correlated. This correla- 
tion must be taken into account for valid inference. King and 
Chinchilli (2001) proposed using U-statistics for inference on 
OCCC. We propose an alternative approach, the generalized 
estimating equations approach (Barnhart and Williamson, 
2001), for the inference on fic. Following Barnhart and Wil- 
liamson (2001) for the case of no subject-specific covariates 
and using the Fisher's Z-transformation ajk = 0.5log{(1 + 

P30k)/(1 - Pk)} for stability, we note that no iterations are 
needed to solve these GEE equations because there are no 
covariates. Briefly, the three GEE equations are as follows: 

N 

ZDUV1 {Yi - i(I)} =0, 
i=l1 

N 

EFH_ 1 {yi2_ i2 (a2, )I = 0, 
i=l1 

N 

Zcdw;-1 {Ui -ei (,i, 2)} = 0, 
i=l1 

where Yi = (Yil,...,Yij)',E(Yi) = ti(t) with t =(t11, 
**,j)', Di = oai(ti/Oj', Y? = (Y1',... ., Y)',EiY) = 

6i2(o2, t) with 2 = (al, .aj), Hi = o6?(o) /o , Uo = 

(YilYi2, Yilyi3,.. *,YilyiJ,*.. ,YiY(J-)YiJ) ,E(Ui) = (a, 

1, u2) with a = (all,.. , a(J-1)J)1, Ci = 06i(at, jX u2)/Oa, 
and Vi, Hi, and Wi are working covariance matrices. If the 
independent working correlation matrices are used, the corre- 
sponding estimates for , t , and P turn out to be the mo- 



Evaluating Agreement Among Multiple Observers 1023 

ment estimates. Furthermore, an empirically adjusted covari- 
ance matrix for (4i, 2, &)' can be obtained using the sand- 
wich estimator in Barnhart and Williamson (2001). Use of 
the sandwich estimator allows one to adjust for the corre- 
lation among multiple readings made on the same subject 
even though this correlation may not be correctly specified 
(Liang and Zeger, 1986; Zeger and Liang, 1986). A delta 
method can then be applied to (3) to obtain the standard 
error for pc. Another approach for inference is to use boot- 
strap samples (Efron and Tibshirani, 1993). One can take 
m (e.g., m = 1000) bootstrap cluster samples from Yi's 
(i = 1,... ,N), where Yi = (Yi1,.. .,Yij)' and the unit of 
cluster is subject. Cluster sampling allows the adjustment of 
correlation among multiple readings made on the same sub- 
ject. Then estimates of pg can be computed for each of the 
m bootstrap samples by using sample means, variances, and 
covariances as in formula (4). Finally, the standard error or 
percentile confidence interval can be obtained by using the 
empirical distribution of the m estimates of p'. Both of these 
inference approaches require assumptions only up to the sec- 
ond moment and no distributional assumption is required. 
The bootstrap approach is more computationally intensive 
than the GEE approach. However, because formula (4) is rel- 
atively easy to compute, we expect that both approaches are 
easy to implement in practice. In the next section, we com- 
pare the GEE approach with the U-statistics approach (King 
and Chinchilli, 2001) by simulation studies. 

4. Simulations 
We examine the bias of the estimated OCCC and determine 
how well the proposed standard error estimates perform with 
small sample sizes (100, 50, and 25) with two sets of simu- 
lations. In both settings, we assume that there are four ob- 

servers and the data are generated from a multivariate nor- 
mal distribution with mean p = (1i,' 2, /L3, 14) and covari- 
ance matrix E. All simulation results are based on 1000 sim- 
ulated data sets. The GEE and the U-statistics approaches 
are used for inference. We have used the bootstrap approach 
with m = 1000 for the sample sizes of 100 and 50 and the re- 
sults (not shown) are similar to the GEE and the U-statistics 
approaches. 

In the first set of simulations, we assume homogeneity and 
use the following true specifications: p = (11, 1L2, 1L3, 14) = 

(0.0, 0.2, 0.4, 0.6) and 

1.0 P P p 
p 1.0 p p 
p p 1.0 p . 

i p p 1.0, 

In this setting, we have pc = 3p/3.2 < p. The simulation 
results are presented in Table 1. The approaches based on 
the GEE and the U-statistics yielded almost identical results. 
The estimated mean standard error is very close to the empir- 
ical standard deviation based on 1000 estimates of pg from the 
1000 data sets for all sample sizes. The 95% coverage based on 
the estimated standard error is smaller than expected, prob- 
ably due to the slight underestimation of the true OCCC. 

In the second set of simulations, we assume that there is no 
observer bias but there are differences in observer variability. 
The true specifications are p = (0, 0, 0, 0) and 

1.0 p 2p vpp 
P 1.0 p V2p 

v/=xp V/p 2.0 2p 
. 

/2p x/2p 2p 2.0/ 

Table 1 
Results of the first set of simulations based on 1000 data sets 

True True Sample Mean 95% Adj. 95% coverage 
p po size Method Mean SD est. SE Coverage N/(N - )a N/(N -2)b N/(N - 3)c 

0.5 0.469 100 GEE 0.464 0.0517 0.0492 93.8% 95.4% 96.3% 96.9% 
U-stat. 0.0491 93.8% 95.4% 96.3% 96.9% 

50 GEE 0.459 0.0702 0.0679 93.1% 93.9% 94.4% 94.9% 
U-stat. 0.0679 93.1% 93.8% 94.4% 95.0% 

25 GEE 0.449 0.1001 0.0906 89.5% 90.9% 91.5% 93.0% 
U-stat. 0.0904 89.4% 90.6% 91.4% 92.8% 

0.7 0.656 100 GEE 0.651 0.0410 0.0398 93.1% 94.1% 95.1% 96.1% 
U-stat. 0.0398 93.2% 94.3% 94.9% 96.1% 

50 GEE 0.646 0.0580 0.0549 92.3% 92.6% 94.0% 95.0% 
U-stat. 0.0550 92.4% 92.7% 93.9% 95.1% 

25 GEE 0.635 0.0841 0.0753 90.4% 91.8% 93.3% 94.0% 
U-stat. 0.0756 90.5% 91.7% 93.2% 94.2% 

0.9 0.844 100 GEE 0.840 0.0226 0.0211 92.4% 93.7% 95.2% 96.0% 
U-stat. 0.0216 92.7% 94.7% 95.4% 96.4% 

50 GEE 0.836 0.0315 0.0300 93.9% 94.4% 95.5% 96.4% 
U-stat. 0.0307 94.2% 94.8% 96.1% 96.9% 

25 GEE 0.828 0.0498 0.0419 91.2% 91.8% 93.6% 94.3% 
U-stat. 0.0428 91.6% 92.3% 93.9% 94.5% 

a The confidence interval is calculated by Pc ? 1.96N/(N - 1) x SE. 
b The confidence interval is calculated by Pc ? 1.96N/(N -2) x SE. 
c The confidence interval is calculated by Pc + 1.96N/(N - 3) x SE. 
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Table 2 
Results of the second set of simulations based on 1000 data sets 

True True Sample Mean 95% Adj. 95% coverage 
p PO size Method Mean SD est. SE Coverage N/(N - )a N/(N - 2)b N/(N - 3)c 

0.5 0.481 100 GEE 0.475 0.0501 0.0485 93.1% 95.4% 96.3% 96.9% 
U-stat. 0.0484 93.0% 94.5% 95.4% 96.2% 

50 GEE 0.472 0.0691 0.0669 92.5% 93.9% 94.4% 94.9% 
U-stat. 0.0669 92.5% 93.2% 94.7% 95.3% 

25 GEE 0.462 0.1003 0.0886 89.8% 90.9% 91.5% 93.0% 
U-stat. 0.0884 89.9% 91.2% 92.3% 93.4% 

0.7 0.673 100 GEE 0.669 0.0375 0.0367 94.6% 95.5% 96.6% 97.0% 
U-stat. 0.0367 94.6% 95.5% 96.6% 97.0% 

50 GEE 0.663 0.0556 0.0509 91.8% 93.1% 94.4% 95.2% 
U-stat. 0.0509 91.6% 93.3% 94.4% 95.5% 

25 GEE 0.651 0.0756 0.0711 91.2% 92.3% 93.2% 93.6% 
U-stat. 0.0713 91.4% 92.2% 93.1% 93.8% 

0.9 0.866 100 GEE 0.863 0.0157 0.0157 95.8% 96.4% 96.9% 97.7% 
U-stat. 0.0157 95.8% 96.5% 96.9% 97.5% 

50 GEE 0.860 0.0240 0.0222 92.7% 94.2% 95.1% 95.9% 
U-stat. 0.0222 92.7% 94.0% 94.9% 95.8% 

25 GEE 0.853 0.0369 0.0317 92.2% 95.4% 93.9% 95.4% 
U-stat. 0.0318 92.0% 93.0% 94.0% 95.3% 

a The confidence interval is calculated by PC ? 1.96N/(N - 1) x SE. 
b The confidence interval is calculated by P ? 1.96N/(N - 2) x SE. 
c The confidence interval is calculated by PC ? 1.96N/(N - 3) x SE. 

We have pc = (3 + 4 x 21/2)p/9 < p. The simulation results 
are presented in Table 2. Again, the two approaches based on 
the GEE and the U-statistics yielded almost identical results. 
Similar to the first set of simulations, we observe that the 95% 
confidence intervals for the true OCCC tend to be smaller 
than expected. To improve the 95% coverage, we consider 
multiplying the standard error estimate by a factor of N/(N- 
1), N/(N -2), or N/(N -3) with a small sample size (see last 
three columns of Tables 1 and 2). We found that the factor of 
N/(N - 1) may do better for a sample size of 100, the factor 
of N/(N -2) works well for a sample size of 50, and the factor 
of N/(N - 3) works well for a sample size of 25. 

5. Examples 
Data from two biomedical studies are used to illustrate the 
use of the OCCC for measuring overall agreement from multi- 
ple observers. The first example is from a study in measuring 
blood pressure. Three readings from three observers using the 
mercury sphygmomanometer (MS) and one reading using the 
inexpensive electronic digital instruments (DI) are available 
for systolic or diastolic blood pressure. The original analysis 
for this study has been reported elsewhere (Torun et al., 1998) 
for pairwise CCCs. A total of 228 adult subjects were evalu- 
ated in the study and each subject had eight readings, four 
for systolic blood pressure (SBP) and four for diastolic blood 
pressure (DBP). The ranges of SBP and DBP among these 
subjects are 82-236 mm Hg and 50-148 mm Hg, respectively. 

Six pairwise plots can be generated to examine the agree- 
ment between any two of the four readings (see Figure 1 for 
readings of the systolic blood pressure). These plots show 
that the points are clustered around the 450 line, with small 
variation. Thus, we expect to see high CCCs and a high 
OCCC. Plots of the four DBP readings show similar find- 

ings (figure not shown). We computed all possible pairwise 
concordance correlation coefficients and their corresponding 
95% confidence intervals (CIs) using both Lin's method, the 
GEE method (Table 3), and the U-statistics approach. The 
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'2 220 - iw 220 - 

200 - 200- 
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8 160 2 160 
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(a) Reading from MS observer 1 (b) Reading from MS observer 1 
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Figure 1. Systolic blood pressure data (mm Hg). 
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Table 3 
Estimated concordance correlation coefficients from blood pressure data 

Systolic Blood Pressure 

95% CI 

Pairwise CCC P2k Lin (1989) GEE U-stat. Pa 
MS observer 1 vs. observerk2 0.988 (0.984, 0.991) (0.984, 0.991) (0.984, 0.991) 0.988 0.9 

MS observer 1 vs. observer 2 0.988 (0.984, 0.991) (0-984, 0.991) (0-984, 0.991) 0.988 0.999 
MS observer 1 vs. observer 3 0.989 (0.986, 0.992) (0.985, 0.992) (0.985, 0.992) 0.990 0.999 
MS observer 2 vs. observer 3 0.987 (0.983, 0.990) (0.983, 0.990) (0.983, 0.990) 0.988 0.999 
MS observer 1 vs. DI 0.973 (0.965, 0.979) (0.964, 0.980) (0.964, 0.980) 0.978 0.995 
MS observer 2 vs. DI 0.969 (0.959, 0.976) (0.957, 0.977) (0.960, 0.977) 0.972 0.996 
MS observer 3 vs. DI 0.977 (0.971, 0.983) (0.970, 0.983) (0.971, 0.984) 0.979 0.998 

Overall CCC X Bootstrap GEE U-stat. pa 

Among four readings 0.981 (0.976, 0.986) (0.976, 0.985) (0.976, 0.986) 0.983 0.998 

Diastolic Blood Pressure 

95% CI 

Pairwise CCC P k Lin (1989) GEE U-stat. P Xa 

MS observer 1 vs. observer 2 0.961 (0.949, 0.969) (0.945, 0.972) (0.947, 0.974) 0.965 0.995 
MS observer 1 vs. observer 3 0.971 (0.962, 0.978) (0.958, 0.980) (0.960, 0.982) 0.976 0.994 
MS observer 2 vs. observer 3 0.965 (0.955, 0.973) (0.951, 0.975) (0.953, 0.977) 0.967 0.998 
MS observer 1 vs. DI 0.947 (0.931, 0.959) (0.926, 0.962) (0.929, 0.964) 0.956 0.991 
MS observer 2 vs. DI 0.954 (0.940, 0.965) (0.935, 0.967) (0.938, 0.967) 0.957 0.997 
MS observer 3 vs. DI 0.957 (0.944, 0.966) (0.940, 0.969) (0.942, 0.971) 0.957 0.999 

Overall CCC X Bootstrap GEE U-stat. p Xa 

Among four readings (GEE) 0.959 (0.947, 0.971) (0.947, 0.971) (0.947, 0.971) 0.963 0.996 

bootstrap method (using 1000 bootstrap samples) based on 
standard deviation of the empirical distribution gave simi- 
lar results (not shown) as the GEE and the U-statistics ap- 
proaches for the pairwise estimates. The OCCC for measuring 
the agreement among the four readings is 0.981 and 0.959 for 
the systolic and diastolic blood pressures, respectively. The 
three inference approaches based on the bootstrap, the GEE, 
and the U-statistics produced similar 95% confidence intervals 
of ,c, (0.976,0.985) and (0.947,0.971) for the systolic and di- 
astolic blood pressures, respectively. As expected, we found 
that both the precision (p) and accuracy (Xa) components of 
the pairwise CCCs and the OCCCs are very high (ranging 
from 0.956 to 0.999). These high agreement values of OCCC 
indicate that the blood pressure reading using the DI method 
is interchangeable with readings by the three observers using 
the MS method. 

The second example is from a carotid stenosis screening 
study conducted at Emory University from 1994 to 1996. 
Three observers, each using three different methods (magnetic 
resonance angiography (MRA) two-dimensional [2D] time of 
flight, MRA three-dimensional [3D] time of flight, and intra- 
arterial angiogram [IA]) to assess the stenosis of both left and 
right carotid arteries. A total of 18 readings is available for 55 
patients with 9 readings from the left artery and 9 readings 
from the right artery. We are interested in estimating both 
the overall agreement among the three methods and overall 

agreement among the three observers within each method. 
For the overall agreement among the three methods, we com- 
pare the three average readings (over the three observers) for 
the methods. The first three graphs, (a)-(c), in Figures 2 and 
3 display the pairwise plots of the three average readings for 
left and right arteries, respectively. Pairwise plots can also be 
produced among three observers for each method. For illus- 
tration, we present only the pairwise plots of the three ob- 
servers using the IA method (the last three graphs [(d)-(f)] 
in Figures 2 and 3 for left and right arteries, respectively). 
The results from the bootstrap, the GEE, and the U-statistics 
approaches are presented in Table 4. As suggested in the sim- 
ulation study, we also present the adjusted 95% confidence 
intervals using the factor of N/(N -2) due to the small sam- 
ple size (N = 55). We find that the agreement among the 
three methods is slightly higher for the right artery than for 
the left artery (0.742 versus 0.668, not significant). The ob- 
servers agree better if they used the IA method (fi'=0.882 
or 0.915 for left and right arteries, respectively) as compared 
with using the MRA 2D or the MRA 3D method (fic is be- 
tween 0.61 and 0.64). To further understand these moderate 
OCCC values, we computed the corresponding components of 
precision (p) and accuracy (Xa) by assuming same pairwise 
correlations (the data suggest that this assumption is reason- 
able). We found that, for all the OCCCs, the accuracy values 
are high (ranging from 0.958 to 0.992). However, the precision 
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values are moderate (ranging from 0.630 to 0.683) except the 
ones among three raters using the IA method (Xa = 0.891 and 
0.923). This finding agrees with the data presented in Figures 
2 and 3, where the points are evenly scattered around the 

100 100 - 

I 80 80s - 

60 ~~~~~~~~~~~~~~160 I 40 - 40- 

0 20 40 60 80 1 00 0 20 4 

0 20 40 60 80 100 0 20 40 60 80 100 
(a) Average reading of observers with 2D (b) Average reading of observers with 20 

- 100- 

80 - 

i 60- * * * 

40 -* * * * 

20- . 

0 20 40 60 80 100 0 20 40 60 80 100 
(C) Average reading of observers with 3D (d) Reading of observer 1 with IA 

100 * 100. 

8 
0- 

80 

45? lie(ihacrc)btaent tihlscted(m - 

60- ~~~~~~~~60- 
40- * 40 - 

20- ~ ~ ~ ~ f 20- 
0 a 0 _ _ _ _ _ _ _ _ _ _ 

0 20 40 60 60 100 0 20 40 60 80 100 
(a) Reading of obsaerver 1 with IA (I) Reading of observer 2 with IA 

Figure 3. Right carotid artery stenosis data. 

450 line (high accuracy) but are not tightly scattered (mod- 
erate precision). We note that the bootstrap method using 
the standard deviation of the empirical distribution from 1000 
bootstrap samples gave similar results as the the GEE 

Table 4 
Overall concordance correlation coefficients for the carotid stenosis screening study 

95% CI 

0c Bootstrap GEE U-stat. p xa 

Left Artery 
Among three methods 0.668 (0.525, 0.811) (0.522, 0.813) (0.524, 0.812) 0.683 0.977 

(Adjusted 95% CI)' (0.517, 0.818) (0.517, 0.818) (0.518, 0.817) 
Among three raters using MRA 2D 0.623 (0.459, 0.787) (0.460, 0.786) (0.461, 0.784) 0.640 0.973 

(Adjusted 95% CI) (0.451, 0.794) (0.454, 0.792) (0.455, 0.790) 
Among three raters using MRA 3D 0.642 (0.475, 0.809) (0.477, 0.807) (0.478, 0.806) 0.650 0.988 

(Adjusted 95% CI) (0.469, 0.815) (0.471, 0.814) (0.472, 0.812) 
Among three raters using IA 0.882 (0.782, 0.982) (0.782, 0.982) (0.784, 0.980) 0.891 0.989 

(Adjusted 95% CI) (0.776, 0.987) (0.778, 0.986) (0.780, 0.983) 

Right Artery 
Among three methods 0.742 (0.621, 0.863) (0.623, 0.862) (0.624, 0.861) 0.773 0.960 

(Adjusted 95% CI) (0.617, 0.868) (0.619, 0.866) (0.619, 0.865) 
Among three raters using MRA 2D 0.607 (0.445, 0.769) (0.451, 0.764) (0.451, 0.763) 0.634 0.958 

(Adjusted 95% CI) (0.439, 0.775) (0.445, 0.770) (0.445, 0.769) 
Among three raters using MRA 3D 0.618 (0.462, 0.774) (0.457, 0.779) (0.459, 0.777) 0.630 0.981 

(Adjusted 95% CI) (0.456, 0.780) (0.451, 0.785) (0.453, 0.783) 
Among three raters using IA 0.915 (0.866, 0.964) (0.865, 0.965) (0.866, 0.964) 0.923 0.992 

(Adjusted 95% CI) (0.861, 0.969) (0.864, 0.967) (0.864, 0.966) 
a Adjusted by using a factor of N/(N - 2). 
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and the U-statistics methods in terms of 95% confidence in- 
tervals. 

6. Discussion 
We have evaluated the agreement index, OCCC, to measure 
agreement among multiple fixed observers. Our definition for 
this index provides two intuitive appeals. First, both preci- 
sion and accuracy are components of the OCCC. Second, we 
can interpret the OCCC as a weighted average of the pair- 
wise agreement indices based on the concordance correlation 
coefficient. A larger weight is placed on poor pairwise agree- 
ment in this overall agreement index. The estimation of the 
OCCC is simple because one only needs to compute the sam- 
ple means, variances, and covariance. All three inference ap- 
proaches based on bootstrap, the GEE, and the U-statistics 
can be used for inference where no distributional assumption 
is required. 

Note that Barnhart and Williamson (2001) showed how 
easily one can incorporate covariates in modeling pairwise 
CCCs using the GEE approach. We believe that the proposed 
GEE approach can be modified similarly to model the co- 
variates' impact on the OCCC. It is not obvious to us how 
one can incorporate covariates in the approach based on the 
U-statistics. This can be a potential advantage of the GEE 
approach over the U-statistics approach. 
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RESUME 

Une mesure juste et precise est une composante importante 
de toute etude experimental. Tel qu'il fut construit par Lin 
(1989), le coefficient de correlation de concordance (CCC) est 
plus adapted que tout autre indice pour mesurer l'agrement 
quand les deux variables en cause sont continues. Neanmoins, 
cet indice d'agrement n'est defini que pour comparer deux 
observateurs fixes. Pour utiliser plusieurs observateurs dans 
une etude avec un grand nombre de sujets, il est necessaire 
d'estimer l'agrement entre de nombreux observateurs. Dans 
cet article, nous presentons un CCC global (OCCC) en fonc- 
tion de la variability inter-observateurs pour 1'estimation de 
l'agrement entre plusieurs observateurs fixes. L'OCCC se re 
vele etre equivalent au CCC generalise (King et Chinchilli, 

2001; Lin, 1989, 2000) quand la fonction du carre de la dis- 
tance est utilisee. Nous evaluons l'OCCC par des GEE equa- 
tions d'estimation generalisees ou GEE (Barnhart et William- 
son, 2001) et des U-statistiques (King et Chinchilli, 2001) 
pour l'inf6rence. Cet article developpe les aspects importants 
suivants: 1) il aborde les indices de justesse et de precision 
comme des composantes de l'OCCC; 2) il eclaircit le fait que 
l'OCCC soit la moyenne ponderee de toutes les pires de CCC; 
3) il est intuitivement defini en fonction de la variability inter- 
observateurs; 4) les approches inf6rentielles des GEE et des U- 
statistiques sont comparees par des simulations sur de petits 
echantillons; 5) l'illustration de l'emploi des OCCC est faite 
sur deux exemples avec les approches GEE, U-statistiques et 
bootstrap. 
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