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Standard categorical analysis is based on an unrealistic model mating historical trends in human immunodeficiency virus 
for dose-response and trends and does not make efficient use of incidence. Fractional polynomial and spline regression are 
within-category information. This paper describes two classes especially valuable when important nonlinearities are antici- 
of simple alternatives that can be implemented with any re- pated and software for more general nonparametric regression 
gression software: fractional polynomial regression and spline approaches is not available. (Epidemiology 1995;6:356-365) 
regression. These methods are illustrated in a problem of esti- 
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Dose-response and trend analyses in epidemiology are 
commonly conducted in a very simple and often naive 
fashion. At worst, authors only conduct a trend test such 
as the Mantel test, or fit a regression model with a single 
exposure term and test the significance of the slope 
(coefficient) for the exposure. Such an approach can be 
very misleading because, in essence, it assumes that the 
dose-response or trend curve follows a specific model 
form (usually logistic).1 

More desirably, authors may break the range of the 
study exposure into categories and look for trends in the 
category-specific coefficients or relative risks.2 Such an 
approach can be adequate if numbers allow the use of 
categories that reflect biologically homogeneous re- 
sponse groups or are very narrow. Too often, however, 
categories are chosen via a mechanical algorithm such as 
the percentile method, in which equal-sized categories 
(tertiles, quartiles, or quintiles) are chosen in the belief 
that such an approach will maximize accuracy and min- 
imize subjectivity in the analysis. The potential pitfalls 
of percentiles are most dramatic when most subjects are 
exposed in a very narrow range or when exposure effects 
are limited to extreme ends of the exposure scale, such as 
very low nutrient levels or very high occupational ex- 
posure levels. In such situations, individuals placed at 
elevated risk by exposure will be submerged among low- 
er-risk members of their percentile category. This hazard 
can sometimes be mitigated by basing percentiles on the 
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case distribution, rather than the distribution of all sub- 
jects, but would be desirable to avoid altogether. 

Many authors have recommended nonparametric re- 
gression as a means of avoiding the categorization prob- 
lem altogether.13'4 This is a preferable approach, espe- 
cially when one can safely assume nothing about the 
form of the trend or the exposure-disease (dose-re- 
sponse) relation. It is mildly hindered by lack of widely 
available software, although this obstacle is gradually 
disappearing. Another occasional drawback is that the 
computing limits (maximum numbers of covariates and 
subjects) for nonparametric regression tend to be much 
lower than those for conventional regression. Because of 
these limits, and because several books on the topic are 
available,3-5 I will not discuss nonparametric regression 
here. Instead, I will describe two alternative curve-fit- 
ting methods that seem under-used in epidemiologic 
research. The two methods, fractional polynomial re- 
gression and spline regression, can be performed with 
any regression program simply by adding some trans- 
formed exposure variables to the regression. Both meth- 
ods are intermediate between simple regression and non- 
parametric regression in behavior, with fractional 
polynomials closer to simple regression (but still a vast 
improvement) and spline regression falling closer to 
nonparametric regression (so close that it may be con- 
sidered an approximation to nonparametric regression). 
As will be discussed below, both categorical analysis and 
splines can be viewed as special types of category-specific 
regression, but splines are based on more realistic cate- 
gory-specific models. 

In what follows, I will denote the exposure of interest 
by x. All points apply even when x is only a time variable 
for which trends are to be plotted, or a confounder for 
which close control is desired. The following analysis of 
secular trends in human immunodeficiency virus (HIV) 
infection incidence will serve to illustrate all of the 
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TABLE 1. New AIDS Diagnoses in Los Angeles County through 1992 
Reported by 1994 among White Non-Hispanic Men Who Have Sex with Men 
Reporting No Injection Drug Use, 1951-1960 Birth Cohort, and Naive HIV 
Incidence-Rate Estimates 

White Non Hispanic 
Years since New AIDS Person-Years, in 

1976 Cases Thousands 
Year (j) (y) (nx) 

1979 3 0 362 
1980 4 0 360 
1981 5 4 355 
1982 6 10 353 
1983 7 46 351 
1984 8 92 349 
1985 9 201 348 
1986 10 329 348 
1987 11 456 348 
1988 12 476 347 
1989 13 606 347 
1990 14 642 348 
1991 15 791 344 
1992 16 645 339 

Total 4,298 
* Number of infections per 100,000 person-years (see Appendix). 

methods discussed in this paper. Throughout, the focus 
will be on estimation of the shape of dose-response or 
trend; a companion article6 describes the advantages of 
splines in testing for dose-response and trends. 

General Description of Example 
A major task in the study of acquired immunodeficiency 
syndrome (AIDS) is estimation of historical trends in 
HIV infection incidence.7 Table 1 presents the 4,298 
AIDS cases diagnosed in Los Angeles County through 
1992 and reported by 1994 among white non-Hispanic 
men who have sex with men (MSM) born 1951-1960 
who reported no injection drug use (IDU). Because 
there are no reliable data on cohort-specific prevalences 
of behaviors that define HIV transmission groups (such 
as sexual behavior), the HIV rates refer to the number of 
HIV MSM cases that reported no injection drug use 
among white non-Hispanic men born 1951-1960, rather 
than the number of HIV cases among non-IDU white 
non-Hispanic MSM born 1951-1960. 

Because HIV incidence has not been directly ob- 
served, historical HIV incidence is computed from ob- 
served AIDS incidence using estimates of the distribu- 
tion of incubation time from HIV infection to AIDS 
diagnosis.7,8 The final column of Table 1 presents HIV 
rate estimates derived from a backcalculation equation, 
given in the Appendix, that relates AIDS to HIV inci- 
dence. These naive estimates involve no model or 
grouping of years. As a result, they present a noisy 
pattern and would fluctuate wildly in response to minor 
changes in the data or the estimation method. 

More stable estimates require use of a model for the 
HIV rates. In the examples below, a series of models for 
these rates will be fitted via a Poisson regression method 
described in detail elsewhere8'9 and summarized in the 
Appendix. The important elements for the present dis- 

Naive HIV 
Rate Estimate* 
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cussion are the structural forms of the 
models. To describe them, let x be 
years since 1976 (1976, then, is year 0, 
which is commonly taken as the start 
of the epidemic), nx the person-years 
at risk in year x, and rx the HIV inci- 
dence rate in year x. The simple log- 
linear model 

rx = exp(a + 3x) (1) 

76 is out of the question, because it im- 
728 

1,744 plies that HIV incidence rates contin- 
433 ued to increase exponentially through 
65 the 1980s and beyond, contrary to ex- 

1,820 111 tensive evidence of leveling and de- 
2,013 dine in the 1980s.5 Hence fx must be 

1925? replaced by a more flexible set of trend 57 
119 terms. Figure 1 presents the fitted HIV 

incidence rates derived from Table 1 
using five different choices for these 
terms, each with four coefficients (be- 
yond the intercept): (1) four category 
indicators for five categories (dotted 

line); (2) fractional polynomial with four powers of un- 
transformed time (short dashes); (3) fractional polyno- 
mial with four powers of log time (solid curve); (4) linear 
spline with four categories of log time (long dashes); (5) 
quadratic spline with three categories of log time (solid 
curve again-it almost perfectly agrees with the frac- 
tional polynomial with log time). The remainder of the 
paper will describe each choice in detail. 

As a special caution in interpreting Figure 1, note that 
the very long incubation time between HIV infection 
and AIDS incidence (median time on the order of 10 or 
more years10) implies that the data in Table 1 contain 
almost no information on HIV incidence after 1989. 
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FIGURE 1. Fitted HIV infection incidence in Los Angeles 
County, 1979-1992: non-IDU MSM cases per 100,000 
person-years among white non-Hispanic men born 1951- 
1960. Short dashes: fractional polynomial curve in untrans- 
formed time; solid curve: fractional polynomial curve in log 
time and (coinciding) quadratic spline curve; dotted line: step 
function from category indicators; long dashes: linear spline. 
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FIGURE 2. Fitted penalized spline HIV incidence curve 
(solid curve) with pointwise 95% confidence limits (dotted 
curves). 

Thus, after 1989 the curves are little more than extrap- 
olations from previous years (hence the increasing di- 
vergence beyond 1989). On the other hand, the data do 
provide a reasonable amount of information on HIV 
incidence before 1989. This point is illustrated in Figure 
2, which shows the fitted curve and pointwise confi- 
dence limits obtained by using a penalized spline 
smoother as part of a multivariate model for HIV inci- 
dence9 (the kinks in these three curves are artifacts of 
the graphing program). As a secondary caution, note 
that the curves in Figure 1 cannot be obtained by fitting 
models to the naive HIV rates in Table 1; all fitting must 
instead be done via backcalculation from observed 
AIDS incidence (Appendix Eq Al). 

Fractional Polynomial Regression 
Many authors recommend that one try to examine poly- 
nomial terms (at least a quadratic term x2) in addition to 
the basic linear term x in the dose-response model.1 
There are problems with polynomial regression, how- 
ever. Although in theory with enough polynomial terms 
one can approximate any smooth curve, in reality the 
number of terms required may be so large as to result in 
numerically unstable estimates. Polynomials greater 
than quadratic tend to produce artifactual turns in the 
fitted curve, whereas quadratics have extremely limited 
flexibility. 

Recently, Royston and Altman11 have emphasized 
that a great deal more flexibility and stability can be 
obtained by examining fractional and inverse powers of 
x, such as x-2, x-1, x-1/2, and x1/2 in addition to x and x2. 
(Terms of the form xr[ln(x)]) are also included in the 
family of curves considered by Royston and Altman, but 
these cannot be used if x can be zero or negative.) 
Royston and Altman point out that models containing 
as few as three different powers of x between x-2 and x2 
encompass a dramatic range of shapes. 

Fractional polynomials do have important limita- 
tions.12'13 For example, x cannot be negative if fractional 

powers are used, and the results will be sensitive to the 
position of the zero-level of exposure x. Thus, fractional 
polynomials may be problematic if x is not ratio scaled; 
that is, it is advisable that x have an absolute zero level 
(unexposed level) and be coded so that this level is 
zero.12 Nonetheless, many, if not most, epidemiologic 
exposures have an absolute zero, so that this limitation 
may be of infrequent practical importance. (If x can be 
negative, Royston and Altman recommend adding a 
positive number to force it to be positive, but this 
approach essentially introduces a new nonlinear param- 
eter into the model, because the optimal number to add 
is unknown.) 

In the HIV example, x does have an absolute zero: it 
is the time at which the epidemic started, which has not 
been precisely determined but is customarily taken to be 
1976. A similar problem (of an absolute but imprecisely 
known zero) arises when using age in studies of adult 
noninfectious diseases: Age is often a surrogate for time 
since start of an unmeasured background exposure (for 
example, hormones) or etiologic process. In such situa- 
tions, it may be advisable to replace age by a more 
biologically relevant time scale in which risk becomes 
nonzero only after time zero. For example, time since 
puberty could serve as such a scale in certain studies of 
cancers of the reproductive system. 

Another problem, one which also afflicts polynomial 
regression, is how to decide which terms to include. 
Royston and Altman propose a special stepwise proce- 
dure, which (like all stepwise procedures) is questionable 
in concept and requires special programming. Ideally, 
one should specify in advance the shape of curves one 
would want the fitted model to encompass. To do so, 
however, requires a sense of what shapes are encom- 
passed by each power of x. For most epidemiologic pur- 
poses, it suffices to recall that, as x increases above 0, x2 
starts more slowly but soon increases more rapidly than 
x, and that x112 starts more rapidly but soon increases 
more slowly than x. From this, a simple qualitative 
dose-response analysis might always include x (the linear 
term) and then: 

1. Include x2 if one expects the slope of the trend or 
dose-response curve (that is, the steepness, or ef- 
fect per unit exposure) to increase in absolute 
value as exposure increases (as with cigarettes per 
day and lung cancer14), or if one expects the curve 
to change direction. 

2. Include x1/2 if one expects the slope to decrease in 
absolute value as exposure increases. 

3. Include both x112 and x2 if one wants to allow for 
either possibility. 

One may, of course, use a higher power of x in place of 
x2 and a lower power of x in place of x112 if one expects 
more rapid changes in slope over the range of exposure, 
and one may include more terms if greater flexibility is 
desired. 

If x can only be positive (as with typical cardiovascu- 
lar and anthropometric measurements), In(x) can be 
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used in place of x1/2 to yield a curve with a very gradually 
declining slope. In fact, if one uses a logistic or expo- 
nential (log-linear) model for risks or rates and x can 
only be positive, it can be argued that In(x) should be 
included in all dose-response and trend analyses. This is 
because the use of x alone in such models implies that 
the rate, risk, or odds ratio for exposure level x vs zero is 
e3X, which increases exponentially with x if 3 > 0. Use 
of In(x) instead yields a rate, risk, or odds ratio of 
exp[/3 In(x)] = xg, which can increase much less rapidly 
than exponentially and can even increase less than 
linearly if 0 < 3 < 1. 

Example 
The short dashes in Figure 1 trace the fitted curve ob- 
tained from Table 1 using: 

rx = exp(a + f3lx1/2 + 32x + f333/2 + 144x2). 

A virtually identical curve was obtained using x3 instead 
of x3/2. The solid line traces the fitted curve obtained 
using powers of ln(x) in place of powers of x as the time 
covariate. Both curves exhibit essentially exponential 
growth until 1982, followed by rapid slowing with a peak 
in 1984, and gradual decline thereafter. 

Although fractional polynomials with only two or 
three exposure terms can produce quite a variety of 
curves, one should be aware when examining such 
curves that their exact shape and location can be 
strongly influenced by one or a few data points. In 
particular, the fitted values for a point can be strongly 
influenced by data at points far away on the graph.13 
This is also a problem with curves fit by quadratic or 
cubic regression, and with the single slope produced by a 
simple regression with only x (the linear term) included. 
Thus, it is especially important to evaluate regressions 
with few exposure terms using influence analysis, which 
involves seeing how much results change when the most 
influential data points are deleted from the analysis (in 
the present HIV example, the basic conclusions are 
unchanged by single deletions). Inclusion of confidence 
limits in the curve graph can also help indicate what 
portions of the curve are poorly estimated. (Methods for 
constructing confidence limits are described in the Dis- 
cussion.) 

Spline Regression 
CATEGORY INDICATORS REVISITED 
Consider ordinary categorical dose-response analysis2 
from the following perspective: One divides the ob- 
served range of exposure x into K categories indexed by 
k = 1, ... , K with K - 1 internal boundaries cl, ..., 
CK-1. Then, within each category, one fits a completely 
horizontal line as the dose-response "curve" relating 
exposure to the outcome within the category. For exam- 
ple, in categorical logistic regression, one simultaneously 
fits K category-specific models for the logit (log odds) of 
risk R: 

logit(R x in category k) = ak, k = 1,..., K, (2) 

which says that x has no effect whatsoever within categories, 
no matter how large its effect between categories! 

To illustrate, suppose x is daily intake of ascorbic acid, 
R is mortality risk, and the internal boundaries for x are 
at 20, 50, and 100 mg per day, with the boundaries 
included in the lower category. The categorical dose- 
response model then says that there is no difference in 
risk between 0 and 20 mg per day but allows there to be 
an arbitrarily large jump in risk between 20 and 21 mg 
per day. This is biologically absurd, given that 0 mg per 
day represents a relatively rapidly fatal deficiency state, 
20 mg per day does not, and the difference between 20 
and 21 mg per day is biologically trivial. Although a 
categorical model can be viewed as providing estimates 
of average risk within categories, one should question 
the value of averaging risks that are known to be as 
disparate as those for 0 and 20 mg per day of ascorbic 
acid. Furthermore, under nonlinear models, the esti- 
mates of average risk provided by category-indicator 
regression can produce a biased impression of the expo- 
sure-specific dose-response curve.15 

The preceding type of model, called a step function, is 
precisely what one is fitting when one breaks exposure 
into categories and then fits a model with K - 1 indi- 
cator variables i2, . . , iK, where ik = 1 if x is in category 
k, 0 otherwise: 

logit(R x) = a1 + a2i2 + .' + aKiK. (3) 

Here, ca = ga and ak = ak - ac for k > 1. The results 
from such a model will not be misleading if risk changes 
little within categories. Unfortunately, selection of cat- 
egory boundaries based on percentiles in no way guar- 
antees that this criterion will be met. In fact, use of 
percentiles virtually guarantees that the criterion will be 
violated if most subjects are concentrated within a nar- 
row subrange of exposure and the exposure does have a 
large effect beyond that subrange. 

The only way to ensure constancy of risk within 
categories is to use very narrow categories. This will 
often yield many more categories than the standard four 
or five-perhaps as many as 10, or even 20. If so, 
numbers may become so small within categories that the 
category-specific estimates are uselessly unstable, as in 
Table 1. Conventional recommendations (of four or five 
categories) seek to minimize variance by using few cat- 
egories, but they unrealistically assume that boundaries 
will be set in an ideal fashion. If, however, the bound- 
aries are not well chosen, bias will result. The variance- 
bias tension is especially severe in categorical dose- 
response modeling because of the unrealistic model that 
underlies the analysis. 

Example 
The small dots in Figure 1 trace the step function ob- 
tained by fitting the categorical model: 

rx = exp(al + a2i2 + aC3i3 + at4i4 + 05i5), 

where i2, i3, i4, i5 are indicators for the categories 1981- 
1982, 1983-1984, 1985-1987, and -1988. The later 
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categories are broader because of the declining stability 
of the estimates over time. The visual impression pro- 
vided by these estimates is less accurate than that from 
the other curves, failing to locate well the early climb 
and later decline in rates. The curve produced by con- 
necting the midpoints instead of the ends of the cate- 
gories (not shown) is a little better but is still not as 
plausible as the smooth curves. Narrower categories (not 
shown) were tried but failed to help, and instead pro- 
duced erratically fluctuating steps. (Note that if one used 
categories based on the AIDS case percentiles from 
Table 1, the results would be disastrous: the first quartile 
extends through 1987, so that the fitted step function 
would represent the dramatic 1980-1987 trend by one 
constant rate!) 

LINEAR SPLINE REGRESSION 
How can one avoid the absurdity, pitfalls, and tensions 
of category-indicator analysis for continuous variables? 
One simple solution is to allow the within-category lines 
to have nonzero slopes, so that the model will allow risk 
to vary within as well as between categories. Furthermore, 
we can fit these lines in such a way that there is no 
sudden jump in risk across category boundaries, so that 
fitted risk changes in a continuous manner within and 
across categories. The simplest method for doing so is 
called linear spline regression, which can be performed 
with conventional regression programs. 

For logistic regression, the objective might be to si- 
multaneously fit the K category-specific linear models: 

logit(R Ix in category k) = ac + P3x. (4) 

We should want these K models to fit together in a 
biologically sensible way, meaning that we want conti- 
nuity (no sudden jumps) in risk across the category 
boundaries. This in turn requires any adjacent pair of 
category-specific models to predict the same risk at their 
common boundary j. For a logistic model, this means we 
must have: 

logit(R|x = ck) = ca + 3kck = ak+l + 3k+lC (5) 

for all k less than K. One way to force Eqs 4 and 5 to hold 
for all k less than K is to fit the following linear spline 
model to all of the data: 

logit(R|x) = ac + ,3x + Pj2s2 + + + 3KSK, (6) 

where sk = 0 if x < Ck, x - ck if x > Ck. sk is sometimes 
called the positive part of x - ck and can also be defined 
as sk = max(0, x - Ck). The parameters in Eq 6 are simple 
functions of the parameters in the K models in Eq 4: 
ac = ctl and 31 = /3, whereas for k > 1, Pk = 3 - P-l1 
is the change in the slope of dose-response in going from 
category k - 1 to category k. The graph of Eq 6 will look 
like a series of connected line segments. 

Example 
The long dashes in Figure 1 trace the linear spline ob- 
tained by fitting the model: 

rx = exp(a + plln(x) + 32s2 + 3S3 + 34S4) 

where 

2 = 0 if x - 6, In(x) - ln(6) 

3 = 0 if x -8, ln(x) -ln(8) 

if x > 6, 

if x> 8, 

and 

if x> 11 

(x = 6, 8, 11 correspond to 1982, 1984, 1987). Apart 
from the artificially sharp peak in 1984, this model 
conveys essentially the same pattern as the fractional 
polynomial curves. 

The general idea exemplified by Eqs 4-6 is to fit 
regression models simultaneously within each category, 
subject to constraints that maintain reasonable relations 
across the strata. These constraints also keep the analysis 
parsimonious. With K separate category-specific linear 
regressions, the total number of coefficients fit would 
have been 2K (K intercepts and K slopes). Nevertheless, 
the intercepts 2, .. . , aK are eliminated because of the 

continuity (no-jump) constraint, leaving only one inter- 
cept. The total number of parameters in Eq 6 is thus K + 
1, only one more than the step function model for the 
same categories (Eq 3). Furthermore, unlike the step 
function (Eq 3), the linear spline (Eq 6) does not depend 
on risk being constant within categories for validity and 
thus can be used with fewer categories than required for 
valid use of the step function (Eq 3). 

MORE GENERAL SPLINE REGRESSION 

Although a linear spline function is a dramatic improve- 
ment over a step function, it still does not have full 
biological plausibility because of the sharp bends (kinks) 
at the boundaries where the slope of the function 
abruptly changes. Also, linear-spline regression can suf- 
fer from instabilities and sensitivities to choice of cate- 
gory boundaries, although usually not as severely as 
category-indicator regression. To address these prob- 
lems, we can create a curve with no sharp bends and a 
more smooth, plausible appearance simply by adding a 
quadratic term to each category-specific model, for ex- 
ample: 

logit(R x in category k) = ak + fkx + %yx2. (7) 

As before, we want no jumps, which means adjacent 
category-specific models must agree at their common 
boundary: 

logit(R x = Ck) = aC + P3Ck + YkC 
(8) 

= ak+1 + k+Ck + Yk+lCk. 

To obtain a smooth appearance, we also want adjacent 
models to have the same slope (derivative) at their 
common boundary, which corresponds to requiring that: 

P+ + 2kCk = 3k+1 + 2Y+1 Ck. (9) 
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Simultaneously fitting the K category-specific quadratic 
models (Eq 7) subject to the continuity constraint (Eq 
8) and the smoothness (slope) constraint (Eq 9) is 
equivalent to fitting the single quadratic spline model: 

logit(RIx) = a + /3x + y7xz + 72S2 + * + K (10) 5U~IL\I/I;XI - CT T E"" T ~Y Y252 + + YKSK, (10) 

where a = a, 3 = 3, 71 = 7y, and, for k > 1, = 

7, - y7-_ is the change in the quadratic term (departure 
from linearity) of the dose-response function in going 
from category k - 1 to category k. This quadratic spline 
model (Eq 10) has only one more parameter than the 
linear spline model for the same categories (Eq 6). Fur- 
thermore, it would ordinarily require fewer categories for 
accuracy than the linear spline model, so that in practice 
no more parameters are needed than for the latter 
model. As with the linear spline, it can easily be fit with 
conventional regression programs. 

Example 
In addition to tracing the log-time fractional polynomial 
curve, the solid curve in Figure 1 coincides with the 
quadratic spline obtained by fitting the model: 

rx= exp(a + 3lln(x) + ylln(x)2 + Y2s2 + y3s2), 

where 

s2= 0 if x < 7, In(x) - ln(7) if x> 7, 

and 

S3 = 0 if x < 10, In(x) - ln(10) if x> 10 

rx= exp[ca + ,lln(x) + y2(s2 - s) 

+ 3(S32 - S) + 74(S4- Si)] 

where 

s2= O if x < 5, In(x) - n(5) 

S3 = 0 if x 7, In(x) - ln(7) 

S4= 0 if x < 9, In(x) -ln(9) 

S5= 0 if x < 12, In(x) - ln(12) 

if x>5, 

if x> 7, 

if x>9, 

if x> 12 

(these spline terms are based on the same categories as 
the earlier category-indicator model). This curve is very 
similar to the linear-spline curve, but rounded at the 
peak and at other category boundaries. 

The type of restricted spline just described should not 
be confused with so-called natural splines,5 in which the 
fitted curve is restricted to be linear below the smallest 
and above the largest observed value of x. These natural 
splines have the same number of parameters as unre- 
stricted splines. They are obtained by treating min(x) 
and max(x) as additional category boundaries and then 
fitting a restricted spline to the expanded set of K + 2 
categories. Within the range of the data, the resulting 
curve is identical to that produced by the unrestricted 
spline. 

As the reader may have surmised, one may further 
extend the category-specific models and constraints. 
The form preferred by most statisticians is the cubic spline 
model,16 which in its unrestricted form may be written: 

(x = 7,10 correspond to 1983,1986). 
Like higher-order polynomials, quadratic splines can 

suffer from odd behavior in open-ended tails of the 
exposure distribution. When this happens, we can fur- 
ther reduce the number of parameters and improve tail 
behavior by restricting the fitted curve to be linear in 
open-ended categories. To restrict the lower tail, one 
need only drop x2 from the model. To restrict the upper 
tail, one drops s2 from Model 10 and replaces the re- 
maining s2 by s2 - SK; one also replaces x2 by x2 - SK if 
the lower tail is not restricted. The quadratic spline with 
both tails restricted to be linear is: 

logit(R x) = a +3x + 72(s2- s)) 

+ Y+ YK-l(SK- - - K). 

This model has only K coefficients including the inter- 
cept. In other words, it has exactly the same number of 
parameters as the crude step-function model (Eq 3), 
given that the same number of categories are used. Yet, 
unlike the step function, it can reproduce a wide variety 
of smooth curves. 

Example 
Because of its closeness to the other curves, Figure 1 
omits the curve obtained by fitting the restricted qua- 
dratic spline: 

logit(R x) = a + fx + yx2 + 81x3 

+ 82S2 + *.. + aKSK, 

(12) 

This model may be derived by adding a cubic term 68x3 
to the category-specific quadratic models (Eq 7) and 
then constraining the curves to be continuous and have 
equal slopes and second derivatives at the boundaries. 
The linear, quadratic, and cubic splines (Models 6 and 
10-12) are all examples of spline functions, which are 
extensively used in the physical sciences and engineer- 
ing but surprisingly rare in epidemiology. In the spline 
literature, the category boundaries cl, . . , cK-1 are called 
knots or join points, because they are the points at which 
the category-specific curves are tied together.3-5,16 Nat- 
ural cubic splines can be extended to produce a non- 
parametric smoother (called a cubic spline smoother) by 
placing a knot at each distinct exposure value and con- 
straining the resulting saturated model with a penalty 
function.3-5 It is also possible to constrain splines to 
produce only monotonic curves (that is, curves with no 
trend reversals).17 

Discussion 
Some external evidence regarding the true epidemic 
curve in the example is available, all of it indicating 
that the smooth curves are better estimates than the 
category-indicator step function. Backcalculations based 
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on much more extensive national data8 indicate that a 
single sharp peak occurred around 1984-1985. More 
generally, both theoretical5 and simulation6 evidence 
indicates that smooth splines have better statistical 
properties than comparably parameterized step func- 
tions. Of course, one may conduct both a traditional 
step-function analysis and a spline analysis. The primary 
point of this paper is simply that some sort of smooth 
curve fitting is advisable when the study covariate is 
continuous and numbers do not permit the use of narrow 
categories. 

All of the above methods can be applied to multiple 
covariates in a model. When applied to confounders, 
however, fractional-polynomial and spline regressions 
can produce more complete confounder control than 
step functions; this is because only the former control for 
confounder effects within strata as well as across strata. 
Generalized additive models3'5 offer the same advantage, 
but within a given computing capacity, fractional poly- 
nomials and splines can be fit to larger datasets with 
more subjects and covariates, and can be fit with any 
regression software. 

UNEXPOSED SUBJECTS 
An issue that often arises when x is a ratio-scaled expo- 
sure (such as alcohol consumption) is whether to delete 
the unexposed during dose-response analysis. As ex- 
plained elsewhere,18 deletion of the unexposed (zero- 
exposed) is not always the best approach and is, in fact, 
an inadvisable waste of information if the unexposed 
and exposed are comparable with respect to factors that 
affect validity (such as uncontrolled confounders and 
selection factors). An advantage of highly flexible mod- 
els (with more than a few exposure terms) over simpler 
models is that the overall curve will usually be less 
influenced by the unexposed than in simpler models, 
and hence the decision to retain or delete the unexposed 
will be less momentous. In nonparametric regression 
with ample data, smoothing neighborhoods can be made 
small, in which case the unexposed will exert little or no 
influence on the curve beyond their immediate low- 
exposure neighborhood. For situations in which the va- 
lidity of retaining the unexposed is in question, a sepa- 
rate indicator variable for the unexposed category can be 
entered in the regression, which will eliminate direct 
influence of the unexposed on the curve. If this is done, 
the resulting fitted curve will not necessarily pass 
through the fitted rate at x = 0, reflecting the fact that 
the unexposed have been effectively eliminated from the 
curve-fitting process. See Greenland and Poole18 for 
further discussion of this approach. 

CHOICE OF SPLINES 

The improved smoothness of quadratic splines over lin- 
ear splines leads me to prefer the former. In contrast, for 
epidemiologic purposes, there seem to be practical dis- 
advantages and little if any advantage to using cubic 
splines instead of the quadratic splines. The primary 
disadvantage of cubic splines is that the cubic form of 

the category-specific models can produce very strange 
shapes in broad categories and in open-ended categories. 
With any spline, category boundaries can be adjusted to 
remove anomalies, whereas end-category anomalies can 
be prevented or removed by further constraining the 
end-category models to be linear.16 Unfortunately, for 
cubic splines, the latter constraint requires that more 
complicated covariates than the sk defined above be used 
in the regression. A more minor disadvantage of cubic 
splines is the poor interpretability of the coefficients, 
especially when end constraints are needed. 

With enough well-chosen categories, cubic splines 
can closely approximate virtually any smooth curve.4 
This advantage seems of doubtful utility for epidemio- 
logic analysis, however, because plausible trends and 
dose-response curves are usually very simple in form 
compared with many of the response functions found in 
engineering and the physical sciences. The primary gain 
from using cubic splines is that they yield very smooth 
curves. Nonetheless, I have not yet found epidemiologic 
data for which a gain from using cubic instead of qua- 
dratic splines is graphically noticeable. In the HIV ex- 
ample used here, a 5-parameter cubic spline model with 
one knot in the mid-1980s yields nearly the same curve 
as the fractional polynomial and quadratic spline curves 
in Figure 1. 

There are certain advantages to using unrestricted 
splines (such as Models 10 and 12) over splines with 
end-category restrictions (such as Model 11). An unre- 
stricted quadratic spline contains the ordinary quadratic 
regression model (the model with x and x2 only) as a 
special case. Hence, the ordinary quadratic model can be 
checked against the more general unrestricted spline 
model (Eq 10) by testing the hypothesis that the spline 
coefficients are zero (y2 = . * * = = 0 in Model 10). 
The restricted spline model (Eq 11) does not contain the 
quadratic model as a special case and so cannot be used 
in this way. Another drawback of restricted splines is 
that, perhaps counter to intuition, an end-category re- 
striction can strongly affect the entire shape of the curve 
and enhance sensitivity of the overall shape to outliers. 
Nonetheless, restricted splines can be useful when linear 
end-category behavior is considered preferable to the 
nonmonotone end-category behavior that unrestricted 
splines can exhibit. 

CHOICE OF CATEGORIES AND TERMS 

There are various schools of thought regarding choice of 
categories for splines. One school seeks automatic meth- 
ods that optimize some statistical criterion, such as min- 
imizing a goodness-of-fit statistic or the cross-validation 
sum of squared residuals.3-5 Others prefer simple visual 
assessment of smoothness: Start with many categories, 
then reduce their number and adjust boundaries so that 
implausible blips, dips, and irregularities are eliminated. 
Another visual approach (suggested by a referee) is to 
use the curve from a smoother to suggest where cutpoints 
should be. All of these approaches have limitations. 
Automated methods (such as stepwise selection of 
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knots) can invalidate conventional tests and confidence 
intervals for trends,16'19,20 whereas visual choice runs the 
risk of introducing subjective biases. Visual choice does 
allow one to use vague prior information about curve 
shape. Absent such information, some authors prefer to 
use percentile categories16; the latter can perform ade- 
quately with splines even when they perform poorly with 
category indicators.6 

The problems just discussed are even more acute for 
ordinary category-indicator regression, because the latter 
is so sensitive to category choice. In particular, use of 
percentile categories can severely harm power and pre- 
cision in category-indicator regression if the exposure 
effect is concentrated in a tail of the exposure distribu- 
tion.6 Unlike category indicators, splines make use of 
within-category risk variation and so can be less sensi- 
tive to category choice,6 although, like category indica- 
tors, they can be sensitive to choice of tail categories 
when those categories are open ended. 

Fractional polynomial regression avoids the problem 
of category choice but instead faces an analogous prob- 
lem in choice of terms. As with category choice, me- 
chanical algorithms for choice of terms invalidate con- 
ventional tests and can perform badly in small to modest 
samples, whereas visual choice runs the risk of introduc- 
ing subjective biases of the analyst. These choice issues 
also arise in nonparametric regression, in which the 
analyst must visually select a value for the smoothing 
parameter, or else have it chosen by an algorithm.3'5 In 
sum, every dose-response or trend analysis (from con- 
ventional categorical to advanced nonparametric) must 
choose the degree of smoothness or complexity in the 
fitted curve via choice of categories, model terms, or 
smoothing parameter. Regardless of the approach one 
uses, graphical inspection of the final fitted curve will 
greatly aid in determining whether the choices made 
yielded credible or surprising results. 

CUTPOINT ANALYSIS AND THRESHOLDS 

An issue of prominence in recent literature is that of 
choosing the proper cutpoint for dichotomous analysis of 
continuous exposures. Special concerns have been raised 
about "cutpoint bias," in which cutpoints are chosen to 
maximize significance or size of estimates.21'22 Nonpara- 
metric curves and quadratic or cubic splines can largely 
finesse such issues by providing a single curve that si- 
multaneously conveys rates or relative risks across the 
full range of exposure, without collapsing together dis- 
parate exposure levels. If there is a threshold for the 
exposure effect, it will be reflected by a steep portion of 
the smooth curve following a near-level portion. One 
should not, however, expect to see a single sharp (ver- 
tical) threshold point, because both exposure measure- 
ment error and individual variation in threshold will 
stretch out the threshold portion of the curve over some 
range of exposure. 

DIAGNOSTICS 

As with all regression, the methods discussed here (in- 
cluding conventional category-indicator regression, as 

well as the alteratives) need to be coupled with regres- 
sion diagnostics (model checking) such as tests of fit, 
residual analysis, and influence analysis. In nonparamet- 
ric regression, the effects of influential data points tend 
to be visually more dramatic but more localized than in 
conventional parametric regression3; similar comments 
apply to the flexible alternatives discussed here. Marked 
influences often show up in tails of the fitted curve, 
which can be strongly pulled toward outlying points. 
Diagnostics such as influence analysis help distinguish 
observed patterns that are resistant to modest changes in 
the data from those that are "driven" by just one or two 
unusual data points. Sensitivity of patterns to conven- 
tional model assumptions can also be explored by com- 
paring conventional results to the results from flexible 
models. 

SAMPLE-SIZE CONSIDERATIONS 

Fractional-polynomial and spline regression are not in- 
herently large-sample techniques and can be applied 
with exact regression programs such as LogXact.23 When 
applied in conjunction with large-sample (asymptotic) 
methods such as maximum-likelihood logistic regression, 
however, checks on sample size adequacy are advisable. 
Perhaps the easiest way of checking adequacy for maxi- 
mum-likelihood logistic spline regression is to examine 
tabular cross-classifications based on the categories used 
to define the spline. By one rough criterion, if there are 
no product terms between exposure and other covari- 
ates, one should have at least five cases and five non- 
cases in each category when applying maximum-likeli- 
hood methods. I am not aware of an equally simple 
sample-size criterion for maximum-likelihood estimation 
of fractional polynomials. 

CONFIDENCE LIMITS 

For clarity, confidence limits were omitted from Figure 
1, but in practice, it can be helpful to include them, as 
in Figure 2. Confidence limits for points on the regres- 
sion curve are an option in many software packages, and 
these options can be invoked when fitting fractional 
polynomials and splines. 

When such options are not available, one may com- 
pute limits directly using large-sample analogues of stan- 
dard formulas.24 As an illustration, suppose we want 95% 
limits at the point x under the quadratic logistic spline 
model (Eq 10). Define the full parameter vector O as: 

=(01, .. , 7K+2) 
= (C, 1, 1, 'Y2,.., YK) 

and the full covariate vector z as: 

Z = Z(Zl, Xo , ZK, x2 , = , , 2,..., ). 

Also, let Cijbe the estimated covariance of the parameter 
estimates Oi and 0j (the Cii are available by requesting 
the covariance matrix output option from the regression 
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software). The fitted logit of risk lx at x is then the dot 
product of 0 and z, 

)'z = izi. (13) 
i 

Approximate pointwise 95% limits for the risk at x are 
then given by: 

expit('z ?+ 1.96v07x2) (14) 

where expit(u) = eu/(l + eu) is the logistic transform, vx 
is the estimated logit variance: 

vx =zz = z , (15) 
i j 

and C is the estimated covariance matrix for 0. 
To estimate the ratio of odds at two different exposure 

levels with full covariate vectors z1 and z0, let d = zl - 
z0 be the vector of differences of the zl and z0 compo- 
nents. The fitted log odds ratio is then 

of bootstrap options for construction of confidence 
bands for the entire curve. 

Conclusion 
The present paper has argued that epidemiologic analy- 
ses of dose-response and trend, as well as methods for 
control of continuous confounders, should be expanded 
beyond simple categorical and linear (single-coefficient) 
approaches to include flexible curves that make use of 
intracategory information. Such expansion can be ac- 
complished with little difficulty via fractional polyno- 
mial regression and spline regression. These methods can 
be especially valuable when important nonlinearities are 
anticipated, as in studies of health effects of alcohol, 
nutrients, and other life-style factors. 
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O'd= Oidi (16) 
i 

and approximate 95% limits for the odds ratio are given 
by: 

exp( 'd + 1.960d1/2) (17) 

where 

Vd = Ecd = d'Cd 
i j 

For cohort data, approximate limits for the risk ratio 
can be obtained using the conditional method of 
Flanders and Rhodes,25 whereas rate ratio limits can be 
obtained from an exponential-multiplicative rate model 
via Formulas 16-18. 

The above formulas can be used when multiple co- 
variates (exposure, confounders, and products among 
them) are present in the full covariate vector z. The 
chief caution in their use is that they are large-sample 
approximations and can become inaccurate if the data 
are too limited. Computations are most easily performed 
using a matrix language such as GAUSS, MATLAB, 
SAS Proc Matrix, or S-Plus. 

Approximate simultaneous 95% confidence limits can 
be constructed by replacing the normal 97.5th percentile 
of 1.96 by the square-root of the 97.5th percentile of a X2 
distribution with degrees of freedom equal to the number 
of parameters (K + 2 for the unrestricted quadratic 
spline). One should note, however, that these simulta- 
neous limits do not provide an accurate 95% confidence 
band for the true regression curve; see section 3.82 of 
Hastie and Tibshirani3 for a discussion of this point and 
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Appendix 
Assuming that migration and AIDS case reporting are nondif- 
ferential, the expectation /jL for the observed AIDS case count 
yj in epidemic year j is: 

tj = qj pixnxrx (Al) 
x=l 

where qj is the probability that someone diagnosed with 
AIDS in year j is reported by the study time (1994), Pjx 
is the probability that someone contracting HIV in year 
x is diagnosed with AIDS in year j, nx is the person-years 
at risk in year x, and rx is the rate of non-IDU MSM HIV 
infections for the population in year x. In the examples, 
Pjx is taken from the stationary 3-parameter Weibull 
curve fit by Bacchetti et al8 to the San Francisco hepa- 
titis B cohort, with leveling of the hazard at its maxi- 
mum. The denominators nx are estimated from census 
data, whereas the qj are estimated directly from the Los 

Angeles County AIDS surveillance data, which supplies 
both diagnosis and reporting dates. 

Given the p,,, nx, qj, and a model for r,, the rx are 
estimated by maximizing the Poisson loglikelihood 
Ej[yjln(jj) - gj] over the unknown model parameters.8 
The naive estimates in Table 1 were obtained by treat- 
ing the log HIV rates a = In(rj) as independent param- 
eters. This corresponds to using a saturated log-linear 
model with an indicator for each year. The backcalcu- 
lation equation (Eq Al) has no unique solution under 
this model, but a solution can be obtained by adding a 
penalty function to the loglikelihood.8 The penalty 
function used for Table 1 is Ex(x - &)2/t2, where t2 = 
1.499 x 107 is the largest value that yielded a solution 
for Eq Al, and a is the information-weighted average of 
the current log HIV rate estimates &x. This penalty 
produces very mild shrinkage of the year-specific rates 
toward the weighted mean rate. Note that, counter to 
intuition, the naive estimates do not average to produce 
the categorical-model results in Figure 1. This is because 
the HIV rate estimates for each year are highly nonlinear 
functions of the AIDS incidence observed in all later 
years, and these functions differ across models as well as 
across years. 
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