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nterpreting Statistics in Medical Literature:
Vade Mecum for Surgeons
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ackground
or most of its history, the practice of medicine has been
profoundly empiric enterprise. Although this empiri-

ism continues by necessity to exist in the clinical envi-
onment, the advent of scientifically rigorous epidemi-
logy has transformed medical research in the 20th
entury.

The driving force behind the maturation of an epi-
emiologic approach to medicine has been the incor-
oration of statistical analysis in modern medical re-
earch, a practice that has become almost mandatory
n past decades.1,2 Sound statistical methods are essential
o medical science because they transform ambiguous
aw data into meaningful results.3 But current trends
oward evidence-based medicine can only flourish in a
ulture of statistical literacy. Such a culture requires phy-
icians who are equipped with the necessary knowledge
nd skills to critically and accurately interpret statistical
ata.2,4-6

Unfortunately, there is ample evidence that many
hysicians are ill prepared to accurately interpret statis-
ical computations in medical literature,2,7,8 and, a sig-
ificant association between number of years out of
edical training and loss of statistical knowledge has

een reported.7 Given the ever-increasing prevalence of
vidence-based practices, such a loss has potentially
rave implications for the medical community.

This article provides a series of nontechnical explana-
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ions of basic statistical operations in medicine, coupled
ith intuitive examples drawn from the field of surgery.

t is hoped that this vade mecum will facilitate the sur-
eon’s critical appraisal of medical literature and its im-
lementation in clinical practice.

hat is the difference between a mean and
median?
he center of a data distribution can be summarized by

he mean or the median. The mean is the sum of all
alues divided by the number of observations. The me-
ian is the middle value when all observations are ranked
rom the least to the greatest (or vice versa). Why is it
mportant to make a distinction between the mean and
he median? The mean is sensitive to outliers (extreme
alues, data points that do not follow the pattern of most
ther data points); the median is not.

xample
et us assume that we are evaluating patients after lapa-
oscopic cholecystectomy. The primary end point (also
nown as the outcome or dependent variable) of the
nvestigation is the length of hospital stay. For the sake of
implicity, let us say that our sample includes five pa-
ients. The lengths of hospital stay of the patients who all
ad a postoperative course without complications were 1
ay, 1 day, 2 days, 3 days, and 3 days. In this example, the
ean and median are identical (2 days). Now hypothe-

ize that the fifth patient suffered from a postoperative
nfection that led to a generalized sepsis and respiratory
ailure requiring prolonged intubation, intravenous an-
ibiotics, and transfer to the intensive care unit and that
his patient was finally dismissed after 56 days of hospi-
alization. The mean length of hospital stay is now 12.6
ays, but the median remains unchanged.
Outliers—patients who behave very differently from

he majority of patients—are frequently present in med-
cal literature and might render interpretation of the
tudy findings difficult.9 Use of the median helps pre-
ent potential distortion of study findings caused by
xtreme values and should be preferably used if outliers
re present.
ISSN 1072-7515/04/$30.00
doi:10.1016/j.jamcollsurg.2003.09.017
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But both mean and median sometimes fail to appro-
riately reflect the nature of the data. Consider a differ-
nt sample of seven patients undergoing laparoscopic
holecystectomy. Let us assume that the lengths of hos-
ital stays were 1 day, 1 day, 1 day, 2 days, 9 days, 11
ays, and 14 days. The median in this example, 2 days,
oorly summarizes the “middle” of the data. The mean,
.6 days, doesn’t give a clear picture of the nature of the
ata either. It is critical that a measure of the variability
f the data and a mean or median be used to summarize
data distribution.

ow to interpret standard deviations and standard
rrors of the mean
lthough the standard deviation (SD) and standard er-

or of the mean (SEM) are distinctly different statistics,
hey are often used interchangeably in medical literature.
onfusion about their correct interpretation is

onsiderable.2,9

The SD is a measure of the variability (scatter) of a
ata distribution. It is a measure of the degree to which
he individual values deviate from the population mean.
arger deviations from the mean indicate more extensive
catter and result in larger standard deviations. The sam-
le SD is an estimate of the population SD and is com-
uted using deviations from the sample mean. There is a
ommon misconception in the medical community
bout interpretation of the standard deviation: it is often
elieved that the standard deviation decreases with in-
reasing sample size. Regardless of the sample size, the
tandard deviation will be large if the data are highly
cattered.

The standard error of the mean (SEM) reflects the
ariability in the distribution of sample means from the
opulation mean. If several different samples were avail-
ble (which is not generally the case), their means would
ary and would have a standard deviation, which is the
EM. Contrary to the SD, the SEM is an inferential
tatistic strongly dependent on the sample size.9 The

Abbreviations and Acronyms

CI � confidence interval
COPD � chronic obstructive pulmonary disease
IBD � inflammatory bowel disease
SD � standard deviation
SEM � standard error of the mean
VMA � vanillymandelic acid
arger the sample size, the smaller the SEM, and the
ore precisely the sample mean estimates the overall

opulation mean.
Because both sample SD and SEM are statistics fre-

uently used in medical literature, it is important to
now how to convert one to the other. The SEM can be
btained by dividing the SD by the square root of the
umber of patients in the sample (SEM � SD/�n).
ultiplication of the SEM by the square root of the

umber of patients will result in the SD (SD � SEM �
n). Again, the SD is the appropriate statistic to de-

cribe the scatter of the data; the SEM estimates the
ariability of an estimate of the sample mean. Some in-
estigators display error bars using the sample-based es-
imate of the SEM instead of the SD for graphic presen-
ation of the data scatter, leading readers to believe that
here is little data dispersion.2,9 The graphic presentation
f SEM instead of SD to indicate data scatter is
isleading.
A standard error can be computed not only for a mean

ut for any kind of sample statistic, eg, proportions,
ifferences between means and proportions, regression
arameters (as described below), and so forth. We will
iscuss the standard errors in context with confidence

ntervals.

ow to interpret risk ratios, absolute risk
eduction, odds ratios, and number needed to treat
lthough the display and analysis of continuous out-
omes (such as tumor size, length of hospital stay, total
ilirubin concentration in the blood, and so forth) are
asy and intuitive, the interpretation of percentages for
ichotomous (binary, “yes or no”) end points is often
ore challenging.10 Examples of dichotomous out-

omes are death, tumor relapse, liver failure, gastrointes-
inal bleeding, and so forth. Results of dichotomous end
oints are frequently presented in medical literature us-
ng risk ratios, odds ratios, absolute risk reduction, and
he number needed to treat. Nonetheless, confusion ex-
sts in the medical community about the interpretation
f these different analytical tools. To facilitate the under-
tanding, let us consider the following hypothetical
xample.

There is extensive evidence in the medical literature
hat consumption of a low-fiber diet is a causative factor
n the development of colon diverticulosis.11-13 In the
S, approximately one-third of people over 45 years of

ge and two-thirds of people over 85 years of age suffer
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rom diverticular disease13 leading to approximately
00,000 hospitalizations per year.14 In Table 1, the risk
actor is consumption of a low-fiber diet, and the out-
ome under investigation is the development of sigmoid
iverticulosis. Let us assume that 40% of patients with-
ut the risk factor and 90% with the risk factor develop
iverticulosis. The incidence of diverticulosis in patients
ith and without a low-fiber diet can be displayed in a 2
2 table.

elative risk
he relative risk (also known as risk ratio, RR) is the

ikelihood of experiencing the outcomes in the group
ith the risk factor divided by the likelihood of experi-

ncing the outcomes in the group without the risk fac-
or. The relative risk [A/(A � B)]/[C(C/C � D)] in this
xample would be 0.9/0.4 � 2.25. That means that the
isk of developing colon diverticulosis for patients with
he risk factor is 2.25 times that of patients without the
isk factor.

bsolute risk reduction
he absolute risk reduction equals the difference in the
ercentages of patients experiencing the outcomes in the
atient subsets with and without the risk factor
A/(A � B) � [C/C � D)]. The absolute risk reduction
epresents the percentage of patients who did not have
he adverse outcomes because of the absence of the risk
actor. In our example, the absolute risk reduction is 0.9

0.4 � 0.5 or 50%. In other words, 50% of patients
onsuming a high-fiber diet do not develop sigmoid
iverticulosis because they eat healthy, high-fiber diets.

he number needed to treat
he number needed to treat has been recently intro-
uced into medical literature as a measure of treatment
r prevention efficacy.15 The number needed to treat (or
n our example, the number needed to prevent) repre-
ents the number of patients that must be treated, or
rom whom a certain risk factor must be removed, to
revent the occurrence of one case. The number needed
o treat is the inverse of the absolute risk reduction (in

able 1. Hypothetical Study of a Risk Factor and a Dichot-
mous Outcome

isk factor
low-fiber diet)

Outcome
(developing colon diverticulosis)

nPresent Absent

es A 90 10 B 100
o C 40 60 D 100
ur example: 1/0.5 � 2). In other words, we would have
o prevent two patients from eating low-fiber diets to
revent the development of sigmoid diverticulosis in
ne case.

dds ratio
he odds are defined as the probability of experiencing

n outcome divided by the probability of not experienc-
ng the outcome.16 All probabilities range from 0% to
00% but odds can be any positive number. The odds
an be easily converted to probability, and vice versa:
dds � probability of experiencing the outcome/

(1 � probability of experiencing the outcome)

Probability of experiencing the outcome � odds/(1 � odds)

An odds ratio (OR) can be computed by dividing the
dds of patients exposed to the risk factor by the odds of
atients without the risk factor. InTable 1, the odds ratio
ould be (A/B)/(C/D) or (0.9/0.1)/(0.4/0.6) � 13.5.
ote that this calculation is equivalent to the ratio (A �
)/(B � C). The odds of developing sigmoid divertic-

losis for patients with low-fiber diets are 13.5 times that
f patients who have regular fiber intake. The odds ratio
s the preferred method of displaying results for case-
ontrol studies, metaanalyses, and logistic regression
nalyses (discussion proceding).

Relative risk, absolute risk reduction, and odds ratio
an be misleading because their clinical importance is
ighly dependent on the underlying prevalence of the
isease. For instance, in our example, the relative risk of
eveloping sigmoid diverticulosis in patients with low
iber intake is 2.25 times higher than that of patients
ith regular fiber consumption. Is this relative risk clin-

cally relevant? That is dependent on the prevalence of
he disease. In the US, where millions of people have
igmoid diverticulosis, the impact of regular fiber diet
ntake would have a large impact on the prevalence of
his disease. Conversely, in some third world countries
here the prevalence of diverticulosis is low, the same

elative risk would be much less important.

ifference between the odds ratio and the
elative risk
he RR is the intuitive measure of differential likelihood of
isease. But some study designs preclude direct estimation
f the RR. For example, suppose the diverticulitis study
ere performed as a case-control study in which 100 pa-

ients with diverticulitis and 100 disease-free controls were
ampled for evidence of a low-fiber diet being a risk factor.
he results might look like Table 2.
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For these data, the odds ratio is (A � D)/(B � C) �
70 � 85)/(15 � 30) � 13.2, a similar figure to the one
alculated from the previous table. But the apparent risk
f disease for those without the risk factor is 30/
15 � 0.26, which is not an accurate representation of
isk. Likewise, the apparent relative risk would be (70/
5)/(30/115) � 3.16, which is an overestimate. The
eason for this discrepancy is that the percentage of di-
erticulitis cases in this study is not representative of the
revalence of diverticulitis in the population. This study
esign allows an appropriate representation of the prev-
lence of the risk factor, but not the disease. But the odds
atio is not affected by the sampling design. For a rela-
ively rare disease, the odds ratio is approximately equal
o the relative risk.

ow to interpret a confidence interval
he results of all studies are based on a limited number,
r sample of patients. The findings of a study may or
ay not be representative of the overall population (tar-

et population) of patients chosen for the study. The
oal of an investigator is to make statements that can be
eneralized from the study sample to all patients with
he disease and the characteristics (eg, age, race, gender,
nd so forth) under investigation. To ensure that the
indings in a study sample have a strict equivalence with
he overall population parameters, a complete patient
opulation, of very large or infinite size, would be
equired—an obvious logistic impossibility. In the ab-
ence of such methods, confidence intervals provide a
seful tool to determine a range of values in which the
arameters of the target population are likely to reside. A
ertain degree of confidence is chosen that indicates how
ure the investigator is that the true value lies within the
iven range.

In the medical community, 95% confidence intervals
95% CI) are commonly used in the presentation of
esults. A 95% CI represents a range of values that will
nclude the true population parameter in 95% of all
ases. In other words, if you took an infinite number of

able 2. Hypothetical Case-Control Study with a Dichoto-
ous Outcome

isk factor (low-fiber diet)

Outcome (developing
colon diverticulosis)

nPresent Absent

es A 70 15 B 85
o C 30 85 D 115
amples of the same size, from the same overall popula-
ion, and calculated the CI in the same manner, the true
arameter in the overall population would be included
5% of the time. There remains a 5% chance that the
rue population parameter is outside the 95% CI. If an
nvestigator wishes to be more sure that the confidence
nterval based on the patient sample includes the true
opulation value, a 99% CI can be chosen, but the 99%
I is wider than a 95% CI because there is a smaller
egree of uncertainty.The higher the level of confidence,
he wider the confidence limits. A 95% CI can be com-
uted for means, proportions, differences of means and
roportions, risk ratios, odds ratios, sensitivity, specific-
ty, and so forth. Again, computing confidence intervals
nly makes sense if the sample is representative of a
arger population for which inferences can be drawn.
he width of the confidence interval indicates the pre-

ision of an estimate and is dependent on the variation in
he data and the number of subjects in the sample. The
idth of the 95% CI and the standard error (SE) are

losely related: for samples of sufficiently large size
n � 60), the 95% CI is usually calculated as the
ean � 2 � SEM. (The factor, with which the SEM is
ultiplied, varies with the samples size. For n � 60 it is

xactly 2, for n � 10 it is 2.3, for an infinitely large
ample size, the factor is 1.96. But the choice of a factor
is a good approximation in the vast majority of appli-

ations.) The greater the dispersion of data and the
maller the sample size, the larger the SE and the wider
he confidence interval. Conversely, the less scattered the
ata and the larger the patient sample, the narrower the
onfidence interval. A wide confidence interval indicates
hat the sample data are insufficient for precisely esti-
ating the effect in the overall population and must be

nterpreted cautiously, regardless of whether or not the
esults are statistically significant.17,18

xample
wenty-four hour urine measurement of vanillylman-
elic acid (VMA) represents a sensitive and specific test

n the diagnosis of pheochromocytoma patients.19,20 Let
s consider a hypothetical sample of 10 patients with
heochromocytoma. The urine measurements in these
atients yielded VMA values of 50, 60, 70, 80, 90, 100,
10, 120, 130, and 140 mg/24 h (normal: �7 mg/24 h).
he 95% CI for the mean VMA value ranges from 73.3

o 116.7 mg/24 h (sometimes displayed as: 95% CI
73.3, 116.7 mg/24 h). The first value is called the lower
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nd the second value the upper confidence limit. We can
e 95% confident that the interval 73.3 to 116.7 mg/24
contains the true population mean for pheochromo-

ytoma patients. If our sample size were five times larger
nd had the same range and value distribution, the 95%
I would be (86.8, 103.2 mg/24 h). A sample size 10

imes larger would result in a 95% CI of (89.2, 100.8
g/24 h). Again, the larger the sample size, the narrower

he 95% CI, and the more precise the sample estimate. If
e had a sample of 10 patients with less variability than

n our previous sample (mean VMA values: 91, 92, 93,
4, 95, 95, 96, 97, 98, 99), the 95% CI would be much
maller (93.1, 96.9). This simple example shows that the
ain determinants of the width of a confidence interval

re the sample size and the data dispersion.

ow to interpret type I and type II errors, sample
ize computations, and power
he findings of a study comparing two groups of pa-

ients can be wrong in two ways21:

. The results might lead to the erroneous conclusion that
there is a difference between the study groups when, in
reality, there is none.

. The results might lead to the erroneous conclusion that
there is no difference between the study groups when, in
reality, a difference exists.

The first situation represents a false-positive result
nd is called a type I error. The bound that we put on the
robability of committing a type I error is named al-
ha.21 Alpha is also referred to as the level of statistical
ignificance or significance level. Number 2 in the pre-
eding list represents a false-negative result and is called
type II error. The probability of committing a type II

rror is referred to as beta.21,22

An alpha of 0.05 is commonly used in medical re-
earch. This means that a 5% chance of obtaining a false-
ositive result is considered acceptable. Alpha is the
enchmark to which p values (discussed later in the ar-
icle) are compared. If the p value is larger than alpha, a
esult is said to be nonsignificant. On the other hand, if
he p value is smaller than the benchmark alpha, the
indings are statistically significant. In other words, al-
ha is the threshold p value below which a result is called
tatistically significant. Beta, the false-negative rate, is
omplementary to the power of a study. In medical sci-
nce, beta is commonly assumed to be at a level of 0.2 or
.1, indicating a power of 80% or 90%, respectively.
ower is defined as the probability of finding a statisti-
ally significant result (of rejecting the null hypothesis)
n a study, if the populations are truly different.21 The
hoice of adequate power in a study is critical because
nvestigators and funding agencies must be confident
hat an existing difference in the overall population can
e detected using the study sample. If, for instance, the
ower in a randomized controlled trial is set at 90% (beta
f 10%) and a true difference exists between the study
rms, we would be able to detect that difference in 9 out
f 10 cases if the trial were repeated an infinite number
f times.

The power of a study is dependent on the following
actors21,22:

. The extent of the true difference between the populations
under investigation

. The alpha level (accepted rate of false-positive results)

. The sample size

With larger sample sizes, larger true differences be-
ween the populations from which the patient samples
ave been drawn, or higher acceptance of false-positive
esults, the power of the study increases.

Before initiating the study, power and sample size
ust be determined. For sample size computations, in-

estigators start by defining a clinically meaningful dif-
erence between treatments A and B, which is believed to
e true for the overall patient population. This differ-
nce is usually based on preliminary data of small phase
I studies or retrospective reviews, but is sometimes spec-
fied according to clinical intuition. If the investigator is
atisfied with an 80% probability of obtaining a statisti-
ally significant difference between the study groups, if
uch a difference truly exists, a smaller sample size is
equired than if 90% power were chosen. In other
ords, a larger sample size corresponds to a higher level
f power. Ideally, both alpha and beta would be set at 0 to
void false-positive and false-negative findings. This
ould require a prohibitively large sample size, render-

ng any trial unfeasible. For a patient sample of given
ize, there is a tradeoff between alpha and beta: the more
tringent alpha (the lower the false-positive rate), the
igher beta (increased rate of false-negative results, lower
ower), and vice versa.21,23 In general, one should choose
small alpha level if avoiding false-positive results is

articularly important (eg, testing the efficacy of a new
hemotherapy regimen with serious adverse effects).
imilarly, a small beta level should be chosen if obtaining
false-negative result would be deleterious; for example,



i
a
l
l
p
w
o

p
i
s
r

1
2

3

4

E
T
t
t
p
o
i
a
c
p
I

s
l
o
c
q
m
h
i

H
R
f
a
i
a
o
t
e
f
i
o
f
t
s
t
a
c
e
r
A

T
P
E
o
d

4
4
4
5
5
5
5
5
5
5
5
5

*
a ns wa

446 Guller and DeLong Interpreting Statistics in Medical Literature J Am Coll Surg
f an investigator wants to demonstrate the superiority of
new, less invasive surgical procedure over an estab-

ished procedure associated with considerable short- and
ongterm sequelae. The false conclusion that the new
rocedure is not as effective as the standard procedure
ould put new patients at risk of suffering worse
utcomes.

It is imperative that the authors of a clinical trial re-
ort the parameters on which the computed sample size
s based.24,25 Despite this, many investigators fail to do
o.22,25,26 If no information about power calculations is
eported, the reader does not know if:

. No sample size requirement was computed.

. The investigators were unable to accrue the initially com-
puted patient number.

. The trial was extended beyond the initially computed sam-
ple size to obtain higher statistical power.

. The investigators stopped the trial earlier than anticipated
because the interim results were favorable.26

xample: table 3
here is suggestive evidence in the medical literature

hat colorectal cancer patients with single disseminated
umor cells in bone marrow and peritoneal lavage sam-
les have a higher risk of suffering a relapse and a shorter
verall survival compared with patients without dissem-
nated tumor cells.27-29 Let us say that we want to design
study that allows us to evaluate the prognostic signifi-

ance of disseminated tumor cells in colorectal cancer
atients. Assuming the 5-year overall survivals for stages
and II colorectal cancer patients with and without dis-

able 3. Sample Size Computations* for a Study Showing t
atients With and Without Disseminated Tumor Cells
xpected 5-y overall survival
f patients with
isseminated tumor cells (%)

Expected 5-y overall su
of patients without

disseminated tumor cell

5 75
5 75
5 75
0 75
0 75
0 75
5 75
5 75
5 75
5 70
5 70
5 70

All sample size computations are based on a 25% positivity rate of the samp
nd a followup interval of 5 y. The program used for sample size computatio
eminated tumor cells to be 45% and 75%, an alpha
evel of 0.05, and a power of 80%, the required number
f patients is 79 (Table 3). Table 3 displays sample size
omputations that would answer the same research
uestion using different overall survival and power esti-
ates. It is important to realize that sample sizes are

ighly dependent on the assumed estimated difference
n survival rate and the chosen power.

ow to interpret a p value
emember that statistics help us to make inferences

rom the patient sample under investigation to the over-
ll population. To understand the meaning of a p value,
t is necessary to understand the meanings of null and
lternative hypotheses. The null hypothesis of a study
ften is the hypothesis that no difference exists between
he study groups. In a randomized clinical trial, for
xample, the null hypothesis states that there is no dif-
erence between study arms for the end point under
nvestigation (eg, disease-free or overall survival, post-
perative complications, postoperative mortality, and so
orth). Conversely, the alternative hypothesis (the one
he investigator wants to demonstrate) is that there is a
ignificant difference between study arms. Let us assume
hat in the overall population, the end points for patients
ssigned to arms 1 and 2 of a two-armed randomized
linical trial are identical and the intervention has no
ffect. Nonetheless, it is possible that certain patients
espond more favorably to the intervention than others.
s we deal with a sample of the overall population it can

-Year Overall Survival Difference Between Colorectal Cancer

Alpha Beta Total sample size

0.05 0.20 79
0.05 0.15 89
0.05 0.10 105
0.05 0.20 108
0.05 0.15 124
0.05 0.10 145
0.05 0.20 161
0.05 0.15 185
0.05 0.10 215
0.05 0.20 287
0.05 0.15 328
0.05 0.10 384

ype I error probability of 0.05 (two-sided), a projected accrual period of 3 y,
s based on references 61 through 65.
he 5

rvival

s (%)

les, a t
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e hypothesized that a difference might occur because of
hance alone (eg, sampling variations). The p value is the
robability that the difference between arms 1 and 2 is at

east as large as that observed in the sample if there is
ctually no difference in the overall population (assum-
ng the null hypothesis).

xample
et us consider a randomized clinical trial comparing
reoperative radiation therapy plus surgery (arm 1) ver-
us surgery alone (arm 2) in the treatment of resectable
sophageal cancer. Assuming that overall survival is the
rimary end point, the null hypothesis of the investiga-
ion states that survival time in both arms is the same.
onversely, the alternative hypothesis claims a survival
ifference between patients randomized to arm 1 and
hose randomized to arm 2. Let us suppose that after
ompleting intervention and followup, patients in arms
and 2 had median overall survivals of 18 months and

2 months, respectively, and that the p value for this
urvival difference was p � 0.02. Interpretation of this
esult is: If the new intervention has equivalent overall
urvival to the standard procedure (if the null hypothesis
ere true), there is a 2% chance of observing a survival
ifference as large as or larger than the one observed. In
ther words, if truly there were no difference between
he treatments in the overall population, and the trial
ere repeated an infinite number of times, an overall

urvival difference of 4 months or more would be ex-
ected to occur by chance in only 2 of every 100 such
rials. If the p value is small, the probability of obtaining
he observed difference by chance alone is low, and one
sually assumes that the null hypothesis does not hold.
onversely, if the p value is large, it is conceivable that

he data are consistent with the null hypothesis, which
annot be rejected.

The following issues about the interpretation of a p
alue are of prime importance:

. A p value is the probability of getting a difference at least as
large as the one observed, under the assumption that the
null hypothesis is true (assuming that there is no difference
between the populations under investigation). A p value
without a null hypothesis is meaningless. One should
never interpret a p value without knowing the null hypoth-
esis with which it is associated.

. A highly significant p value (eg, p � 0.001) tells you that
the difference observed in your study would occur very
rarely (in only 0.1% of all cases) if truly there were no
difference between the study groups. The p value does not
prove that the alternative hypothesis is true. p Values are
based on the assumption that the null hypothesis is true
and only provide evidence against the null hypothesis, not
evidence to support the alternative hypothesis.

. The p value depends on the existing difference between the
study groups, the scatter of the data (the standard devia-
tion), and the sample size. The larger the difference be-
tween the study groups, the smaller the standard deviation,
or the larger the sample size, the more significant the p
value. In light of these factors that influence the magnitude
of the p value, the benchmark of 0.05 should not be used as
a clear cutoff between relevant and unimportant results.
Guyatt and colleagues30 emphasized this fallacy: “Why use
a single cut-off point [for statistical significance] when the
choice of such a point is arbitrary? Why make the question
of whether a treatment is effective a dichotomy (a yes-no
decision) when it would be more appropriate to view it as
a continuum?”

. A nonsignificant p value does not demonstrate that the
null hypothesis is true. As mentioned previously, large p
values might be simply due to small sample sizes or highly
scattered data. A nonsignificant p value tells you only that
the evidence is not strong enough to reject the null hypoth-
esis.31,32

. A p value is claimed to be statistically significant if it is
smaller than the threshold of statistical significance (al-
pha). The latter is most commonly set at 0.05, but, in
certain situations can be lower (see multiple comparisons).

. Frequently researchers make statements such as “the asso-
ciation was found to be statistically significant (p
value � 0.05).” What does this mean?The p value could be
0.049 or 0.00001. It is much more informative and helpful
to the reader to give the exact p value and even better to
display the confidence interval.17

Despite the fact that a p value of 0.05 is frequently
onsidered a default benchmark for significant results,
he instances discussed earlier show that this is a falla-
ious standard. Interpreting a p value is sensitive to a
ost of factors, all of which should be taken into account
y a conscientious researcher.

ow to interpret one-tailed versus two-tailed
values
n investigator who compares a new treatment to the

tandard treatment may have reason to believe that the
ew therapy is superior based on phase II studies or
etrospective reviews. Should a one-tailed (one-sided) or
wo-tailed (two-sided) p value be used to compare these
reatments? Both one- and two-tailed p values are based
n the null hypothesis (that the treatments are equally
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ffective). A two-tailed (or two-sided) p value represents
he probability that the difference between two
reatments—assuming the null hypothesis to be
rue—is as large or larger than observed, with either
reatment being superior to the other. Conversely, a one-
ailed (one-sided) p value represents the probability that
he difference observed would have occurred by chance
lone, with one treatment being superior to the other as
pecified in the alternative hypothesis.33 The one-tailed p
alue is usually half of the two-tailed p value. Although
wo-tailed p values are commonly used throughout
edical literature, some investigators argue that one-

ailed p values are appropriate in certain situations. Here
re some general guidelines about this issue:

. Unless you can state with absolute certainty that a differ-
ence between two interventions can only go in one direc-
tion, a two-tailed p value should be used.33 For instance,
although you might believe that a new radiochemotherapy
regimen for rectal cancer patients does improve overall
survival, patients might actually die earlier from unexpect-
edly severe side effects.

. If you use a one-tailed p value, the alternative hypothesis
must be stated in advance (a priori hypothesis), specifying
the intervention believed to be superior.34

. There have been instances in medical science when, at the
end of a trial yielding a marginally significant two-tailed p
value (eg, 0.06) for the difference between interventions,
the p value was switched to a one-tailed p value (0.03) to
obtain a statistically significant result. Such behavior is
misleading and should be abandoned. Some authors have
suggested that the level of statistical significance should be
set at 0.025 if a one-tailed p value is used.35,36

linical versus statistical significance of a result
s previously mentioned, the magnitude of the p value
epends on the sample size. If the sample size is large,
ven tiny differences between study groups will become
tatistically significant. The question is whether these
mall differences are clinically relevant. Statistically sig-
ificant results may well prove to be trivial.3 On the
ther hand, even though the p value might not be sta-
istically significant (eg, from a small sample size), the
ifferences found between the study groups might ap-
ear to be clinically relevant.3,22 Frequently, only p values
re reported in the medical literature but they lose their
elevance if the sample sizes are large. In these situations,
onfidence intervals are helpful and informative in in-
erpreting study findings and should be provided in ad-
ition to p values.
xample
et us compare the mean length of hospital stay after
pen versus laparoscopic appendectomy. We will hy-
othesize that the true mean length of hospital stay is
.16 days for patients undergoing laparoscopic surgery
nd 3.20 days for patients having open appendectomy
nd that the standard deviation for length of stay is 0.5
ays. Is this difference of any clinical relevance? Almost
ertainly not, as the difference (0.04 days) is only ap-
roximately 1 hour. If, 4,908 patients or more (Sample
ize computation based on alpha of 0.05, beta of 0.2, and
tandard deviation of 0.5 days) are evaluated, half of
hem undergoing open appendectomy and the other
alf having laparoscopic surgery, the p value will become
ignificant at a level of 0.05. If 10,678 patients (and this
arge patient number is not uncommon for retrospective
econdary data analyses) are in the study, the p value
ecomes highly significant (0.001), and with 14,004
atients the p value becomes extremely significant
0.0001). Conversely, let’s assume that laparoscopic ap-
endectomy is truly associated with a shorter length of
ospital stay compared with the open procedure and
hat the difference is half a day (3.2 days for laparoscopic
ppendectomy and 3.7 days for open appendectomy).
onsidering that length of hospital stay is correlated to
ospital costs,37,38 a difference in length of stay of 0.5
ays between patients undergoing open and laparo-
copic appendectomy undoubtedly represents a clini-
ally important finding. If less than 34 patients are eval-
ated, the p value will not be statistically significant at an
lpha level of 0.05, demonstrating once again that one of
he main determinants of statistical significance is sam-
le size.

ow to view confidence intervals and p values as
eing complementary
esearchers are more likely to report p values than con-

idence intervals.26,30 But confidence intervals provide
uch more information to the astute reader than do p

alues alone3,17,26 and are now requested by many jour-
als in the reporting of study findings.1,39 Although p
alues and confidence intervals might seem different at
irst glance, closer scrutiny reveals that they are comple-
entary. Both are computed using the same underlying

ssumptions. If the 95% confidence interval includes
he value of the null hypothesis (eg, 0 for the difference
etween means, or 1 for a risk ratio and or odds ratio),
he p value will be greater than 0.05. On the other hand,
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f the 95% CI does not include the value of no differ-
nce, the p value will be less than 0.05. Confidence
ntervals are also very helpful in interpreting nonsignif-
cant p values.3,17 If the range of the 95% CI of differ-
nces or risk ratios includes values that are clinically
rivial, one can assume the results to be irrelevant with
igher confidence. If the 95% CI includes values that
ou find clinically important, the study should be con-
idered inconclusive because a small sample size might
e a reason for not reaching statistical significance.

xample
t is well known that smokers are at higher risk for gastric
lcers compared with nonsmokers.40-42 Let us assume
hat a study comparing the incidence of gastric ulcers of
mokers versus nonsmokers found a relative risk and a
5% confidence interval of 2.9 (0.9, 4.9). Because the
5% confidence interval includes 1 (the value of the null
ypothesis), the corresponding p value will be nonsig-
ificant. As explained previously, this does not necessar-

ly demonstrate that smokers do not have an increased
isk for gastric ulcers compared with non-smokers. The
idth of the 95% confidence interval is considerable

because of a small sample size), ranging from a relative
isk of 0.9 to 4.9. So smokers might be 0.9 times through
.9 times more likely to develop gastric ulcers compared
ith nonsmokers. This confidence interval certainly

overs values that have clinical importance, so, the find-
ngs of this hypothetical study should not be declared
egative but rather inconclusive. Let’s say that we had
ssessed a sample size four times larger than the initial
tudy population, the 95% confidence interval would
ave narrowed to (1.9, 3.9), and, because the null value

s not included anymore, the p value would have been
ignificant. This example is graphically displayed in Fig-
re 1.

igure 1. Point estimates and 95% confidence intervals for two
amples. If the 95% confidence interval includes 1, the p value is
ot significant.
eware of multiple comparisons and
ubset analyses
f no difference exists between two groups of patients in
he overall population (if the null hypothesis were true),
he p value tells you how likely it is to get a difference at
east as large as observed by coincidence. As explained
reviously, to limit the probability of a false-positive
type I) error, the threshold of statistical significance
alpha level) is usually set at 0.05. If you test multiple
ndependent null hypotheses—all of which are true—in
he same investigation, the probability that one p value
ight become statistically significant by chance alone

ncreases. Multiple comparisons carry the risk of provid-
ng false-positive results.32,43

Most investigations in the medical literature test
any different null hypotheses,26,44-46 so the probability

f getting a statistically significant result by coincidence
s likely to exceed the standard of 5%. For instance, if
ou test 10 different independent null hypotheses, the
robability of obtaining a statistically significant result
t an alpha level of 0.05 is 40% (1–0.9510), for 50 null
ypotheses it is 92% (1–0.9550), for 100 null hypotheses
ver 99% (1–0.95100).43 (The numbers in parentheses
epresent the formulae to compute the risk of obtaining
false-positive result.) p Values must be interpreted cau-

iously if many independent null hypotheses are tested.
Often measures are taken to decrease the risk of ob-

aining false-positive results caused by multiple compar-
sons. For instance, the Bonferroni method23—the sim-
lest and most often used technique to adjust for
ultiple comparisons—divides the alpha level by the

umber of independent hypotheses tested.47 If you test 5
ypotheses, the level of statistical significance should be
ecreased to 0.01 (0.05/5); if you test 10 different null
ypotheses, the level of statistical significance should
ecome 0.005 (0.05/10). The Bonferroni method has
onservative properties and should not be used for ad-
usting for more than 10 hypotheses.44

Subset analyses are common in medical literature and
re similar to multiple comparisons about their potential
isk of obtaining spurious results, and their requirement
or cautions interpretation.45,48 After evaluation of the
utcomes in the overall sample, study findings are as-
essed in subsets of patients (eg, stratified for age, gender,
reexisting risk factors, severity of the disease, and so
orth). Many investigators perform subset analyses re-
ardless of the overall outcomes of the study. If the over-
ll outcomes of a trial show a significant difference be-
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ween study groups, subset analyses might be performed
o identify patients who particularly benefit from the
reatment. Conversely, if the overall outcomes in a study
re negative (no statistically significant difference be-
ween the study groups), subset analyses are frequently
erformed to show some benefit of the treatment in at

east a certain subset of the patients. The dangers of
erforming subset analyses are well known.32 As dis-
ussed previously, the increased rate of false positivity
erives from making multiple comparisons, testing mul-
iple different hypotheses, and as a result, getting statis-
ically significant results at a level that exceeds alpha even
f all tested null hypotheses were true. If, on the other
and, an investigator finds nonsignificant results in sub-
roups, the conclusion that in reality there is no differ-
nce within these subsets might be erroneous too, be-
ause the study was not designed and adequately
owered to detect a significant difference in the patient
ubsets. So, subgroup findings should be viewed as ex-
loratory, subject to confirmation in another trial.
There is ongoing debate in the medical literature

bout whether, and how, to adjust for multiple compar-
sons.23,44,47,49 The following guidelines are crucial in the
nterpretation of study subgroup analyses:

. A priori versus a posteriori hypotheses: It is important to
make the distinction between hypotheses that were created
before performing the study (a priori) versus hypotheses that
were stated after the conduct of the study (a posteriori).26,47

A priori stated hypotheses do not carry the risk that the
investigator was influenced by the readily available data, so
are less prone to erroneous conclusions. If hypotheses are
stated a posteriori, it is possible that the investigator looked
at different patient subsets until significant results were
found. This phenomenon is often referred to as “data min-
ing,” “data dredging,” or “fishing expedition.” Investiga-
tions for which hypotheses are formulated after the study
has been conducted should be viewed more as hypothesis
generating rather than hypothesis testing, and even more
so if they look at patient subsets and perform multiple
comparisons.44,47,50

. Often investigators test multiple hypotheses, but report
only the statistically significant findings.47 This is mislead-
ing and potentially dangerous if the study has clinical im-
plications. It is imperative to clearly state and report all
tested hypotheses and associated p values.

xample
nflammatory bowel disease (IBD) represents a public
ealth problem affecting approximately 1 of 1,000 indi-
iduals in Western countries. The etiology and patho-
enesis of IBD await additional clarification. It is gener-
lly accepted that IBD occurs predominantly in
enetically susceptible people51,52 yet many genetic loci
nvolved in the pathogenesis of this disease need to be
etermined.53 Satsangi and colleagues54 performed a
enome-wide search for susceptibility genes in patients
ith IBD. The authors investigated 260 different ge-
etic loci for potential linkage to IBD. Because 260 null
ypotheses were tested, there was a definite risk of ob-
aining false-positive results if the standard alpha level of
.05 was used. So the investigators correctly chose a level
f statistical significance of p � 0.001, which is 50 times
maller than the commonly used cutoff (p � 0.05).
lso, the investigators viewed their study as hypothesis
enerating rather than hypothesis testing.

ow to interpret survival curves
survival curve is a graphic presentation of time to event

ata. The term survival curve is somewhat misleading, as
ot only time to death, but time to any event can be
raphically displayed.55 For instance, a “survival” curve
an plot time to tumor recurrence, time to extubation
fter a surgical procedure, time to rejection of a kidney
ransplant, and so forth. The starting point of a survival
urve, or time zero, marks the beginning of the period of
bservation for the event under investigation. For in-
tance, time zero can be when the patient enters a pro-
ocol, the time point of randomization, the day of oper-
tion, start of adjuvant chemotherapy, and so forth. By
efinition, the start of a survival curve is always set at
00% because all patients whose clinical course is graph-
cally displayed are alive at this point in time. Each step
own on a survival curve represents the occurrence of an
vent. If two (three) patients experience the event under
nvestigation, the step down is twice (three times) as
arge as that for one event.

In the majority of survival analyses, some patients are
lost” before the event occurs, or before followup is com-
lete for the study. This phenomenon occurs frequently
n investigations that enroll patients over many years. So
he length of followup varies greatly among patients.
atients who do not experience the event of interest are
eferred to as censored, either during the study (eg, be-
ause of loss to followup) or at the end of the study.56

ensoring enables patients to provide valuable informa-
ion to the study despite not being followed over the
ntire investigation. When a patient is censored, the sur-
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ival curve remains horizontal. The number of patients
t risk decreases, so, the next event will result in a larger
tep down than the previous one.

It is important that survival curves indicate when a
ubject is being censored. Graphically this is usually
one using tick marks. Display of censored subjects en-
bles the reader to deduce how the number of patients at
isk has decreased.

To compute the proportion of patients surviving
hrough a given day, one needs to divide the number of
atients at risk at the end of a day by the number of
atients at risk at the beginning of the day, excluding
ensored patients both from the numerator and the de-
ominator. To compute the proportion of patients sur-
iving over a certain time period, multiply the propor-
ion of patients surviving day 1, day 2, day 3, and so
orth.36

As with means, proportions, and differences in means
nd proportions, one can compute the 95% confidence
ntervals around survival curves.55 Although any survival
urve is a graphic presentation of time to event data of a
inite sample, as with any statistic, the true population
urvival curve likely differs from that of the sample. We
an be 95% sure that the true survival curve of the over-
ll population lies within the 95% confidence interval
imits. The smaller the sample size, the larger the confi-
ence limits around the survival curve.
The survival curve allows us to easily obtain the me-

ian survival (or time to recurrence, and so forth) by
rossing a horizontal line through the survival curve at
he 50% mark of the ordinate.The number of months or
ears at the abscissa of this crossing point represents the
edian survival time (Fig. 2). If the horizontal line

rawn from the 50% mark of the ordinate does not cross
he survival curve, less than half the patients have expe-
ienced the event and the median time to event cannot
et be computed.

hat is a confounding variable?
efore defining a confounding variable it is important to
nderstand the meaning of, and the association be-
ween, a predictor variable and an outcome. Commonly,
tudies are designed to show a link between a predictor
ariable (independent variable) and an outcome (depen-
ent variable). Predictor variables can be either a diag-
ostic or therapeutic interventions (eg, new surgical
herapy, new diagnostic procedure) or a risk or prognos-
ic factor such as age, patient comorbidity, tumor size,
ymph node status, and so forth. Frequently assessed
utcomes in surgical literature are disease-free survival,
verall survival, response to a treatment, and postopera-
ive morbidity. A confounding variable (confounding
actor, confounder) is an extrinsic factor that is linked to
he predictor variable and also impacts the outcome.The
erceived association between the predictor and the out-
ome variable is distorted because of the confounder.57

xample
n intuitive example to illustrate confounding is the

elationship of frequent bar visits to the development of
iver cirrhosis. We all know that frequent bar visits in and
f themselves are of no danger to the liver if the person
oing to the bar only consumes soft drinks and watches
basketball game. It is obvious that frequent bar visitors
ave a tendency to consume alcohol, which is unequiv-
cally linked to developing liver cirrhosis.58,59 Alcohol
onsumption in this case is the confounding variable
Fig. 3). If we categorize a sample of people by whether
hey are frequent or nonfrequent bar visitors and assess
he relationship of this variable with liver cirrhosis, we
ost likely will find a high degree of association. But if
e stratify the population of frequent bar visitors by the

onfounding factor (alcohol consumption), frequent bar

igure 2. Hypothetical survival curve comparing two groups of colo-
ectal cancer patients. The solid line survival curve plots time to
eath for node negative, the dotted curve for node-positive patients.
n the group without lymph node metastases, only one patient dies
t 15 mo of followup. Nine node-negative patients die, two (step is
wice as big) at 12 mo of followup. Median survival for the node-
ositive group is approximately 10 mo; the median survival for the
egative group cannot be computed because fewer than half of the
ubjects are deceased at the end of the study. Note that 16 patients
ere censored, and that the survival curve remains horizontal during
ensoring.
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isits would no longer be associated with developing
iver cirrhosis.

ow to interpret multivariable analyses
n medical literature—especially in nonrandomized ob-
ervational studies—confounding can be a major prob-
em. For instance, in an observational study comparing
wo treatments, patients undergoing treatment A might
ubstantially differ from patients having treatment B
ith respect to factors such as age, gender, race, socio-

conomic status, comorbid diseases, and tumor staging
nd grading. All of these are probably also related to the
utcomes of interest, so are potential confounding vari-
bles. The investigator seeks to assess the relationship
etween the primary predictor variable (type of therapy,
versus B) and the outcomes under investigation after

he potential distortion through covariates has been
liminated. The use of stratification when multiple po-
ential confounders are present is cumbersome. The pre-
erred method of adjusting for many confounding vari-
bles simultaneously is multivariable analyses.

Depending on the type of outcome variable, one of
hree different multivariable analyses is generally appro-
riate: For continuous outcomes (eg, postoperative

ength of hospital stay), multiple linear regression anal-
sis is appropriate; for categorical or dichotomous out-
omes (eg, presence of metastases), multiple logistic re-
ression analysis is useful; and for time to event

igure 3. Relationship between putative risk factor, confounding
ariable, and outcome.

able 4. How to Interpret Positive and Negative Beta Coeffi
ype of multivariable analysis Positive beta coef

ultiple linear regression
analysis

Mean value of the outcome in
presence of risk factor (if dich
independent continuous varia

ultiple logistic regression
analysis

Probability of the outcome in
presence of risk factor (if dich
independent continuous varia

roportional hazard regression
analysis

Hazard increases with presenc
(if dichotomous) or as indepen
variable increases.

Presence of risk factors is coded as 1, lack of risk factor as 0.
utcomes (eg, time to death or time to recurrence), the
roportional hazards regression analysis is often chosen
Table 4). For any outcome, multivariable analyses pro-
ide the risk-adjusted (often called “independent”) im-
act of the primary predictor variable on the outcomes
fter controlling (risk-adjusting) for the potential con-
ounding of all other covariates.

xample
onsider a prospective observational study comparing
pen versus laparoscopic colectomy for sigmoid diver-
iculitis with end points such as postoperative morbidity
nd mortality, length of hospital stay, operating time,
nd cost. Let us assume that study findings show lapa-
oscopic colectomy to be clearly superior to open colec-
omy for these end points. Does this mean that laparo-
copic colectomy is truly better than open surgery? Not
ecessarily. It is conceivable that patients undergoing
pen versus laparoscopic colectomy differ in important
isk factors. Patients receiving open colectomy might be
lder, sicker, have more complicated disease, have lower
ocioeconomic status, or be operated on by less experi-
nced surgeons. Any of these factors might confound the
elationship between the primary predictor variable
type of procedure: open versus laparoscopic colectomy)
nd the end points. To obtain the true benefit (if any) of
aparoscopic colectomy, multivariable analyses must be
erformed. All potential confounding variables must be
ncluded in the statistical models to adjust for the differ-
nces between the patient subsets undergoing open and
aparoscopic procedures. Again, use of multivariable
nalysis is particularly important in nonrandomized tri-
ls because imbalances between the study groups can be
xpected. Randomization helps to distribute known and
nknown confounding variables equally among arms, so
nalyses of a randomized controlled trial do not neces-
arily require multivariable adjustment.

s*
t Negative beta coefficient

es with
ous) or as
creases.

Mean value of the outcome decreases with
presence of risk factor (if dichotomous) or as
independent continuous variable increases.

s with
ous) or as
creases.

Probability of the outcome decreases with
presence of risk factor (if dichotomous) or as
independent continuous variable increases.

isk factor
continuous

Hazard decreases with presence of risk factor
(if dichotomous) or as independent continuous
variable increases.
cient
ficien

creas
otom
ble in
crease
otom
ble in
e of r
dent
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In all three types of multivariable analysis, the vari-
ble’s beta coefficient (not to be confused with the pre-
iously mentioned rate of false-negative results) indi-
ates how the dependent variable responds to changes of
he independent variable, after adjusting for all other
ovariates in the model. As the type of model changes for
ifferent types of end points, the interpretation of the
eta coefficient changes too (Table 4).
In multiple linear regression analysis, the outcome is

ontinuous. A positive beta coefficient signifies that the
ndependent variable and the mean value of the depen-
ent variable vary in the same direction (either both

ncreasing or both decreasing). Conversely, a negative
oefficient indicates that while the independent variable
ncreases the mean outcome decreases, and vice versa.

In multiple logistic regression analysis, the appropri-
te statistical tool to assess the risk-adjusted impact of
ovariates on categoric end points, the logit is modeled.
he logit is the natural logarithm of the odds of experi-

ncing the outcomes. The beta coefficient in logistic
egression models expresses how the logit changes with
hanges in the independent variable. Although the logit
s difficult to interpret on its own, it can be easily trans-
ormed into the odds ratio by taking the antilogarithm
exponentiating) of the beta coefficient.

As mentioned previously, proportional hazards re-
ression is frequently used if a time to event end point is
eing evaluated. Time to event outcomes incorporate
ore information than dichotomous end points if the

ollowup period is sufficiently long (eg, we not only
now whether or not death occurred but also how long
fter cancer resection).32,36,60 In proportional hazards re-
ression analysis, the beta coefficient represents the
hange in the natural logarithm of the relative hazard for
one-unit change in the independent variable. The rel-
tive hazard represents the ratio of instantaneous risk of
xperiencing the event for patients having a certain risk
actor to the instantaneous risk of experiencing the event
or patients where this risk factor is absent. Similar to the
oefficients in logistic regression analyses, the relative

able 5. Hypothetical Multiple Linear Regression Model:
aparoscopic Appendectomy
ariable Beta coefficient Sta

aparoscopic surgery �0.67
ge (y) 0.02
OPD 0.37

OPD, chronic obstructive pulmonary disease.
azard is obtained by taking the antilogarithm of the
eta coefficient.
It is important to remember that larger beta coeffi-

ients, or smaller standard errors result in more signifi-
ant p values. This applies to all three multivariable tech-
iques. As a rule of thumb, a beta coefficient that exceeds

ts standard error by a factor of two will likely be associ-
ted with a statistically significant result. It seems intui-
ive that an estimate associated with a large standard
rror (which, as discussed previously, represents the pre-
ision of the estimate) is unlikely to be statistically
ignificant.

xample 1 (table 5)
et us assume that we are performing a retrospective
nalysis of open and laparoscopic appendectomy. The
utcome under investigation is length of hospital stay
easured in days, and the main predictor variable is the

ype of procedure (laparoscopic versus open appendec-
omy). Because we are dealing with a retrospective re-
iew rather than a prospective randomized clinical trial,
t is conceivable that patients undergoing laparoscopic
peration were substantially different from open appen-
ectomy patients in regard to putative confounders such
s age and presence of chronic obstructive pulmonary
isease (COPD). To obtain the risk-adjusted difference

n length of hospital stay between open and laparoscopic
ppendectomy, we must include age and presence of
OPD in the model.
Laparoscopic surgery. Let us remember that multi-

le linear regression models the mean value of the out-
omes. The beta coefficient for laparoscopic surgery is
0.67, meaning that the mean length of hospital stay of

atients undergoing laparoscopic appendectomy is 0.67
ays shorter (because of the negative sign) than that for
atients undergoing open procedures after adjusting for
otential age and race differences. In this example, lapa-
oscopic appendectomy was coded as 1 and open appen-
ectomy as 0. The importance of correct interpretation
f coding becomes evident in this example: If open ap-

parison of Length of Hospital Stay Between Open and

error p Value 95% Confidence interval

�0.0001 [�0.74, �0.61]
1 �0.0001 [0.019, 0.024]

�0.0001 [0.29, 0.45]
Com

ndard

0.04
0.00
0.04



p
d
�
a
s

y
b
e
d
p

C
p
d
C
a
w

c
s
c
h
t
s

E
L
o
i
c
p
m
t
e
T
o
I
i
t

s
i

t
r
o
A
e
(
i
t
I
c
r
p
t
w

s
C
e
i
p
b
v
1
C
9
h
p
t
n

H
s
A
u
v
t
a

T
L

V

L
A
C

C

454 Guller and DeLong Interpreting Statistics in Medical Literature J Am Coll Surg
endectomy were coded as 1 and laparoscopic appen-
ectomy as 0, the beta coefficient would have been
0.67, meaning that open appendectomy patients have
length of hospital stay 0.67 days longer than laparo-

copic appendectomy patients.
Age. The beta coefficient for age is 0.02. So, for each

ear of age, the average length of hospital stay increases
y 0.02 days. In other words, 60-year-old patients are
xpected to have a 0.8-day (40 � 0.02 days/year � 0.8
ays) longer length of hospital stay than 20-year-old
atients.
Chronic obstructive pulmonary disease (COPD).

OPD was coded as present (1) and absent (0). The
resence of COPD is associated with hospital stays 0.37
ays longer than those for patients who do not have
OPD. Again, the interpretation of coding is critical. If

bsence of COPD were coded as 1, the beta coefficient
ould have been �0.37.
For all three covariates in this model, the beta coeffi-

ients are more than twice as large as the standard errors,
o the p values are statistically significant. Also, the 95%
onfidence intervals do not include the value of the null
ypothesis (for continuous outcomes � 0), indicating
hat the p values are below the level of statistical
ignificance.

xample (table 6)
et us consider the same study evaluating a different
utcome (postoperative infections). As a postoperative
nfection either occurs or doesn’t (dichotomous out-
ome), the multiple logistic regression model is the ap-
ropriate statistical tool for the analysis. Remember that
ultiple logistic regression analyses model the logit of

he outcomes (natural logarithm of the odds of experi-
ncing the outcomes). The logit is difficult to interpret.
hankfully, the logit can be easily transformed into the
dds ratio by taking the antilogarithm (exponentiating).
f the beta coefficient in a logistic regression model (and
n a proportional hazard regression analysis) is negative,
he corresponding odds ratio (hazard ratio) will be

able 6. Hypothetical Multiple Logistic Regression Model
aparoscopic Appendectomy

ariable Beta coefficient S

aparoscopic surgery �0.535
ge (y) 0.007
OPD 0.10

OPD, chronic obstructive pulmonary disease.
maller than 1. Conversely, if the beta coefficient is pos-
tive, the corresponding odds ratio will exceed 1.

Laparoscopic surgery. The beta coefficient is nega-
ive, resulting in an odds ratio smaller than 1. The odds
atio (laparoscopic versus open surgery) of having a post-
perative infection is 0.59 (antilogarithm of �0.535).
gain, interpretation of the coding is critical. In this
xample, laparoscopic appendectomy was coded as 1
and open as 0). So, the odds of having a postoperative
nfection after laparoscopic surgery is only 0.59 times
he odds of experiencing an infection after open surgery.
f open appendectomy were coded as 1, the beta coeffi-
ient would be �0.535, and the corresponding odds
atio 1.69 (�1/.59), meaning that the odds of having a
ostoperative infection after open surgery are 1.69 times
hose of laparoscopic surgery. The change in coding
ould not result in a change of the p value.
COPD. The beta coefficient is positive, so the corre-

ponding odds ratio is greater than 1. Patients with
OPD are 1.11 times more likely to experience postop-

rative infections than patients without COPD. Again,
f the coding were reversed (absence of COPD � 1,
resence of COPD � 0), the beta coefficient would
ecome negative (without a change in the absolute
alue: �0.10), and the odds ratio would be 0.9 (�1/
.11) and would be interpreted as the odds for non-
OPD patients relative to patients with COPD. The
5% confidence interval crosses the value of the null
ypothesis (for ratios � 1), resulting in a nonsignificant
value. Also, the beta coefficient is smaller than twice

he standard error, which is indicative that the results are
ot significant.

ow to assess the performance of
tatistical models
s described previously, statistical models are frequently
sed to adjust for confounding factors that could explain
ariability in outcomes. For example, two important fac-
ors that contribute to population variability in height
re gender and age. When analyzing height as a function

mparison of Postoperative Infections Between Open and

ard error p Value
Odds ratio and 95%
confidence interval

.05 �0.0001 0.59 [0.50, 0.69]

.001 �0.0001 1.007 [1.004, 1.01]

.06 0.1 1.11 [0.96, 1.32]
: Co

tand

0
0
0
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f diet, one would naturally adjust for both gender and
ge.

Statistical models can also be used in an attempt to
escribe an outcome in terms of the factors that influ-
nce it. These types of models are called predictive mod-
ls and their performance as such needs to be assessed.
or linear regression models, a common assessment tool
s the model R2, which is the percent of variability in the
utcomes that is jointly explained by the predictor vari-
bles in the model. The higher the R2, the better the
rediction of the statistical model. For example, the R2

or a model of height (the outcomes) as a function of age
mong young people 5 to 17 years old might be 0.53,
eaning that 53% of the variability of height is ex-

lained by age. Adding gender to the model might in-
rease the R2 to 0.61. Adding factors related to diet
ight further increase the R2 to 0.73. Seventy-three per-

ent of the variability in height is now explained by the
redictor variables age, gender, and diet. The resultant
odel would still leave 27% of the variability unex-

lained. The residual variability is from factors that have
ot been included in the model or random variation.
For a dichotomous outcome analyzed by means of

ogistic regression, the situation is somewhat more com-
lex. A predictive linear regression model attempts to
stimate the actual outcomes for each individual, and
he logistic regression model produces an estimate of the
robability of experiencing the outcomes for each indi-
idual. The most common mechanism for describing
ow well a logistic regression model predicts the proba-
ility of experiencing the outcomes is the c-index, which
s a concordance measure. For each pair of patients in
hich one experiences the outcomes (the case) and the
ther does not (the control), the pair is concordant if the
stimated probability of the outcomes is higher for the
ase than for the control.The c-index is then the number
f concordant case-control pairs divided by the total
umber of such pairs. A c-index close to 50% implies
hat the model cannot discriminate between cases and
ontrols; a c-index close to 100% would indicate that,
iven the characteristics in the model, the estimated
robabilities for cases are generally higher than those for
ontrols. It is useful to view the c-index as the area under
he receiver operating characteristics (ROC) curve,
hich is a summary curve portraying how well the esti-
ated probabilities each separate the case population

rom the control population.
hat statistical test should be used?
he choice of the appropriate statistical test primarily
epends on several factors, including type of outcomes
continuous, categorical, or time to event), whether the
ata are paired (clustered) or unpaired, the number and
ype of risk factors or covariates being analyzed, and the
ssumed distribution of the data.

utcomes
s discussed previously, the most frequently encoun-

ered end points in medical literature are continuous,
ategorical, or time to event. Although continuous out-
omes cover a range (eg, tumor shrinkage measured in
illimeters after neoadjuvant chemotherapy), categori-

al outcomes have only certain possible values (eg, di-
hotomous outcomes, such as response to chemother-
py, presence of metastases, and so forth). The time to
vent outcome is frequently used in surgical oncology,
here studies evaluate the time after tumor resection to

elapse or death.

aired versus unpaired data
paired (or clustered) data analysis should be used in

he following situations:

. If two or more measurements are done in the same subjects
(eg, before and after an intervention)31 (this would be a
repeated measures design).

. If we have matched pairs or clusters of subjects (eg, if, for
each patient in a certain sample, another patient or patients
with similar characteristics such as age, gender, race, and so
forth has been assigned in a comparison sample, or if there
are natural clusters such as members within families or
patients within the same hospital).31

A paired test should be used to account for the lack of
ndependence in the data and to obtain accurate p
alues.

ormal versus non-normal data distributions
ost statistical tests are either parametric (relying on a

pecified data distribution) or nonparametric (not rely-
ng on a specified data distribution). Many parametric
ests rely on the normal distribution, which can be rep-
esented by the symmetric, bell-shaped Gaussian distri-
ution curve. Parametric tests are more powerful than
onparametric tests if the underlying assumption about
pecific data distribution is met (Table 7).

It is often difficult to decide whether or not a para-
etric test should be selected. A nonparametric test is

enerally preferred in the following situations: If the
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able 7. Most Commonly Used Statistical Tests in Medicine

arametric test

Corresponding
nonparametric

test Null hypothesis to be tested Example

ontinuous outcome
wo sample
(unpaired) t test

Mann-Whitney-U
test

Difference between means* from two
independent (unpaired) samples is 0.

To compare the mean* values of gamma glutamyl
transpeptidase between independent (unpaired)
samples of patients with and without history of
alcohol abuse.

ne sample
(paired) t test

Wilcoxon matched
pair test

Difference between two
measurements on the same sample
(eg, before, after) or in matched
patients is 0.

To compare the mean* tumor size in one sample of
patients with rectal cancer before and after
neoadjuvant radiotherapy.

ne way analysis
of variance
(ANOVA)

Kruskal-Wallis test

Difference between means* from
three or more unpaired/unmatched
groups is 0.

To compare the average number of sampled lymph
nodes in three unpaired/unmatched groups of
patients undergoing different resection methods of
pancreaticoduodenectomy for pancreatic cancer.

epeated-measures
analysis,
including
repeated
measures
ANOVA

Friedman test
(analogue of
repeated measures
ANOVA)

Difference between trajectory from
three or more paired/matched groups
is 0.

To compare the trajectory of CEA values with respect
to race (Caucasian, African American, others) of
colorectal cancer patients at several different time
points after resection.

ultiple linear
regression
analysis

Regression on
ranks, other less
frequently used
tests

There is no association between a
predictor variable and the continuous
outcome after adjusting for potential
confounding factors.

To evaluate whether age is independently associated
with length of hospital stay in breast cancer patient
undergoing lumpectomy after adjusting for race,
socioeconomic status, comorbidities, tumor stage, and
so forth.

ichotomous/categoric outcome
hi-square test or Fisher’s exact test†

Difference between proportions of the
outcome from two (or more) in-
dependent/unmatched samples is 0.

To compare the proportion of successful endoscopic
retrograde cholangiopancreatography in unmatched
samples of elderly versus young patients with
choledocholithiasis.

cNemar’s test Probability of the outcome is not
more likely in one setting versus
another (eg, pre or post or with one
therapy versus another).

To compare the likelihood of response to proton
pump inhibitors versus histamine antagonists for
gastroesophageal reflux disease in matched patient
samples.

ultiple logistic regression analyses There is no association between the
predictor variable and the categoric
outcome after adjusting for potential
confounding factors.

To assess the independent (risk-adjusted) impact of
length of postoperative immobility on the occurrence
of pulmonary embolisms after adjusting for age, race,
socioeconomic status, comorbidities, and so forth.

ime to event outcome
og rank test (based on assumption that
the relative hazard does not change
over time)

Average hazards in the two groups are
equal.

To compare the survival curves of colorectal cancer
patients with liver metastases undergoing
radiofrequency ablation versus cryotherapy.

ox proportional hazard regression analysis
(semi-parametric model, based on the
assumption that the hazard ratio [hazard
rate of group 1 divided by hazard rate of
group 2] is constant over time).32 The relative hazard of two patient

samples is one after adjusting for
potential confounding factors.

To assess whether patients with cancer of the
parathyroid gland with elevated postoperative
parathyroid hormone have a shorter overall survival
compared with patients with normal parathyroid
hormone after adjusting for potential confounding
variables such as age, gender, race, socioeconomic status,
tumor size, grading, staging, and so forth.

Non-parametric statistics test for equality of medians rather than means.
For small sample sizes (� 20 patients), the chi-square test does not provide accurate results and Fisher’s exact test must be used. For large samples, both Fisher’s

xact test and chi-square test yield similar results.
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utcome is a score, eg, trauma score, comorbidity score,
nd so forth; if many outliers are present; and if the
istribution of the data is clearly non-Gaussian. If it is
nclear whether or not the data allow analysis by a para-
etric test, it is usually better to use a nonparametric test

ecause the latter will yield slightly more conservative p
alues.

In conclusion, basic knowledge about statistical com-
utations in medical literature is invaluable for critical
ssessment of scientific findings and their implementa-
ion in clinical practice. The learning curve for appro-
riate interpretation of biostatistics is steep and the pro-
ess highly iterative. This article only scratches the
urface of statistics in medicine. Some topics have been
ntirely omitted. Nonetheless, we hope that this vade
ecum will provide a useful resource for surgeons and
ther physicians and will be a stimulus to enhance their
bility to interpret statistical analyses.
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