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Interpreting Statistics in Medical Literature:
A Vade Mecum for Surgeons

Ulrich Guller, MD, MHS, Elizabeth R DeLong, PhD

Background

For most of its history, the practice of medicine has been
a profoundly empiric enterprise. Although this empiri-
cism continues by necessity to exist in the clinical envi-
ronment, the advent of scientifically rigorous epidemi-
ology has transformed medical research in the 20th
century.

The driving force behind the maturation of an epi-
demiologic approach to medicine has been the incor-
poration of statistical analysis in modern medical re-
search, a practice that has become almost mandatory
in past decades."” Sound statistical methods are essential
to medical science because they transform ambiguous
raw data into meaningful results.” But current trends
toward evidence-based medicine can only flourish in a
culture of statistical literacy. Such a culture requires phy-
sicians who are equipped with the necessary knowledge
and skills to critically and accurately interpret statistical
data.>*°

Unfortunately, there is ample evidence that many
physicians are ill prepared to accurately interpret statis-

tical computations in medical literature,*”*

and, a sig-
nificant association between number of years out of
medical training and loss of statistical knowledge has
been reported.” Given the ever-increasing prevalence of
evidence-based practices, such a loss has potentially
grave implications for the medical community.

This article provides a series of nontechnical explana-
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tions of basic statistical operations in medicine, coupled
with intuitive examples drawn from the field of surgery.
It is hoped that this vade mecum will facilitate the sur-
geon’s critical appraisal of medical literature and its im-
plementation in clinical practice.

What is the difference between a mean and

a median?

The center of a data distribution can be summarized by
the mean or the median. The mean is the sum of all
values divided by the number of observations. The me-
dian is the middle value when all observations are ranked
from the least to the greatest (or vice versa). Why is it
important to make a distinction between the mean and
the median? The mean is sensitive to outliers (extreme
values, data points that do not follow the pattern of most
other data points); the median is not.

Example
Let us assume that we are evaluating patients after lapa-
roscopic cholecystectomy. The primary end point (also
known as the outcome or dependent variable) of the
investigation is the length of hospital stay. For the sake of
simplicity, let us say that our sample includes five pa-
tients. The lengths of hospital stay of the patients who all
had a postoperative course without complications were 1
day, 1 day, 2 days, 3 days, and 3 days. In this example, the
mean and median are identical (2 days). Now hypothe-
size that the fifth patient suffered from a postoperative
infection that led to a generalized sepsis and respiratory
failure requiring prolonged intubation, intravenous an-
tibiotics, and transfer to the intensive care unit and that
this patient was finally dismissed after 56 days of hospi-
talization. The mean length of hospital stay is now 12.6
days, but the median remains unchanged.
Outliers—patients who behave very differently from
the majority of patients—are frequently present in med-
ical literature and might render interpretation of the
study findings difficult.” Use of the median helps pre-
vent potential distortion of study findings caused by
extreme values and should be preferably used if outliers
are present.
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Abbreviations and Acronyms

CI = confidence interval

COPD = chronic obstructive pulmonary disease
IBD = inflammatory bowel disease

SD = standard deviation

SEM = standard error of the mean

VMA = vanillymandelic acid

But both mean and median sometimes fail to appro-
priately reflect the nature of the data. Consider a differ-
ent sample of seven patients undergoing laparoscopic
cholecystectomy. Let us assume that the lengths of hos-
pital stays were 1 day, 1 day, 1 day, 2 days, 9 days, 11
days, and 14 days. The median in this example, 2 days,
poorly summarizes the “middle” of the data. The mean,
5.6 days, doesn’t give a clear picture of the nature of the
data either. It is critical that a measure of the variability
of the data and a mean or median be used to summarize
a data distribution.

How to interpret standard deviations and standard
errors of the mean

Although the standard deviation (SD) and standard er-
ror of the mean (SEM) are distinctly different statistics,
they are often used interchangeably in medical literature.
Confusion their
considerable.””

The SD is a measure of the variability (scatter) of a
data distribution. It is a measure of the degree to which
the individual values deviate from the population mean.
Larger deviations from the mean indicate more extensive
scatter and result in larger standard deviations. The sam-
ple SD is an estimate of the population SD and is com-
puted using deviations from the sample mean. There is a
common misconception in the medical community
about interpretation of the standard deviation: it is often
believed that the standard deviation decreases with in-
creasing sample size. Regardless of the sample size, the
standard deviation will be large if the data are highly
scattered.

The standard error of the mean (SEM) reflects the
variability in the distribution of sample means from the
population mean. If several different samples were avail-
able (which is not generally the case), their means would
vary and would have a standard deviation, which is the
SEM. Contrary to the SD, the SEM is an inferential
statistic strongly dependent on the sample size.” The

about correct interpretation s

larger the sample size, the smaller the SEM, and the
more precisely the sample mean estimates the overall
population mean.

Because both sample SD and SEM are statistics fre-
quently used in medical literature, it is important to
know how to convert one to the other. The SEM can be
obtained by dividing the SD by the square root of the
number of patients in the sample (SEM = SD/v/n).
Multiplication of the SEM by the square root of the
number of patients will result in the SD (SD = SEM X
\/n). Again, the SD is the appropriate statistic to de-
scribe the scatter of the data; the SEM estimates the
variability of an estimate of the sample mean. Some in-
vestigators display error bars using the sample-based es-
timate of the SEM instead of the SD for graphic presen-
tation of the data scatter, leading readers to believe that
there is little data dispersion.>” The graphic presentation
of SEM instead of SD to indicate data scatter is
misleading.

A standard error can be computed not only for a mean
but for any kind of sample statistic, eg, proportions,
differences between means and proportions, regression
parameters (as described below), and so forth. We will
discuss the standard errors in context with confidence
intervals.

How to interpret risk ratios, absolute risk
reduction, odds ratios, and number needed to treat
Although the display and analysis of continuous out-
comes (such as tumor size, length of hospital stay, total
bilirubin concentration in the blood, and so forth) are
easy and intuitive, the interpretation of percentages for
dichotomous (binary, “yes or no”) end points is often
more challenging.’” Examples of dichotomous out-
comes are death, tumor relapse, liver failure, gastrointes-
tinal bleeding, and so forth. Results of dichotomous end
points are frequently presented in medical literature us-
ing risk ratios, odds ratios, absolute risk reduction, and
the number needed to treat. Nonetheless, confusion ex-
ists in the medical community about the interpretation
of these different analytical tools. To facilitate the under-
standing, let us consider the following hypothetical
example.

There is extensive evidence in the medical literature
that consumption of a low-fiber diet is a causative factor
in the development of colon diverticulosis.'""" In the
US, approximately one-third of people over 45 years of
age and two-thirds of people over 85 years of age suffer
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Table 1. Hypothetical Study of a Risk Factor and a Dichot-
omous Outcome

Outcome
(developing colon diverticulosis)
Risk factor
(low-fiber diet) Present Absent n
Yes A 90 10 B 100
No C 40 60 D 100

from diverticular disease" leading to approximately
200,000 hospitalizations per year.'* In Table 1, the risk
factor is consumption of a low-fiber diet, and the out-
come under investigation is the development of sigmoid
diverticulosis. Let us assume that 40% of patients with-
out the risk factor and 90% with the risk factor develop
diverticulosis. The incidence of diverticulosis in patients
with and without a low-fiber diet can be displayed in a 2
X 2 table.

Relative risk

The relative risk (also known as risk ratio, RR) is the
likelihood of experiencing the outcomes in the group
with the risk factor divided by the likelihood of experi-
encing the outcomes in the group without the risk fac-
tor. The relative risk [A/(A + B)]/[C(C/C + D)] in this
example would be 0.9/0.4 = 2.25. That means that the
risk of developing colon diverticulosis for patients with
the risk factor is 2.25 times that of patients without the
risk factor.

Absolute risk reduction

The absolute risk reduction equals the difference in the
percentages of patients experiencing the outcomes in the
patient subsets with and without the risk factor
[A/(A + B) — [C/C + D)]. The absolute risk reduction
represents the percentage of patients who did not have
the adverse outcomes because of the absence of the risk
factor. In our example, the absolute risk reduction is 0.9
— 0.4 = 0.5 or 50%. In other words, 50% of patients
consuming a high-fiber diet do not develop sigmoid
diverticulosis because they eat healthy, high-fiber diets.

The number needed to treat

The number needed to treat has been recently intro-
duced into medical literature as a measure of treatment
or prevention efficacy.”” The number needed to treat (or
in our example, the number needed to prevent) repre-
sents the number of patients that must be treated, or
from whom a certain risk factor must be removed, to
prevent the occurrence of one case. The number needed
to treat is the inverse of the absolute risk reduction (in

our example: 1/0.5 = 2). In other words, we would have
to prevent two patients from eating low-fiber diets to
prevent the development of sigmoid diverticulosis in
one case.

Odds ratio
The odds are defined as the probability of experiencing
an outcome divided by the probability of not experienc-
ing the outcome.'® All probabilities range from 0% to
100% but odds can be any positive number. The odds
can be easily converted to probability, and vice versa:
Odds = probability of experiencing the outcome/
(1 — probability of experiencing the outcome)

Probability of experiencing the outcome = odds/(1 + odds)

An odds ratio (OR) can be computed by dividing the
odds of patients exposed to the risk factor by the odds of
patients without the risk factor. In Table 1, the odds ratio
would be (A/B)/(C/D) or (0.9/0.1)/(0.4/0.6) = 13.5.
Note that this calculation is equivalent to the ratio (A X
D)/(B X C). The odds of developing sigmoid divertic-
ulosis for patients with low-fiber diets are 13.5 times that
of patients who have regular fiber intake. The odds ratio
is the preferred method of displaying results for case-
control studies, metaanalyses, and logistic regression
analyses (discussion proceding).

Relative risk, absolute risk reduction, and odds ratio
can be misleading because their clinical importance is
highly dependent on the underlying prevalence of the
disease. For instance, in our example, the relative risk of
developing sigmoid diverticulosis in patients with low
fiber intake is 2.25 times higher than that of patients
with regular fiber consumption. Is this relative risk clin-
ically relevant? That is dependent on the prevalence of
the disease. In the US, where millions of people have
sigmoid diverticulosis, the impact of regular fiber diet
intake would have a large impact on the prevalence of
this disease. Conversely, in some third world countries
where the prevalence of diverticulosis is low, the same
relative risk would be much less important.

Difference between the odds ratio and the

relative risk

The RR is the intuitive measure of differential likelihood of
disease. But some study designs preclude direct estimation
of the RR. For example, suppose the diverticulitis study
were performed as a case-control study in which 100 pa-
tients with diverticulitis and 100 disease-free controls were
sampled for evidence of a low-fiber diet being a risk factor.

The results might look like Table 2.
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Table 2. Hypothetical Case-Control Study with a Dichoto-
mous Outcome

Outcome (developing
colon diverticulosis)

Risk factor (low-fiber diet) Present Absent n
Yes A 70 15 B 85
No C 30 85 D 115

For these data, the odds ratio is (A X D)/(B X C) =
(70 X 85)/(15 X 30) = 13.2, a similar figure to the one
calculated from the previous table. But the apparent risk
of disease for those without the risk factor is 30/
115 = 0.26, which is not an accurate representation of
risk. Likewise, the apparent relative risk would be (70/
85)/(30/115) = 3.16, which is an overestimate. The
reason for this discrepancy is that the percentage of di-
verticulitis cases in this study is not representative of the
prevalence of diverticulitis in the population. This study
design allows an appropriate representation of the prev-
alence of the risk factor, but not the disease. But the odds
ratio is not affected by the sampling design. For a rela-
tively rare disease, the odds ratio is approximately equal
to the relative risk.

How to interpret a confidence interval

The results of all studies are based on a limited number,
or sample of patients. The findings of a study may or
may not be representative of the overall population (tar-
get population) of patients chosen for the study. The
goal of an investigator is to make statements that can be
generalized from the study sample to all patients with
the disease and the characteristics (eg, age, race, gender,
and so forth) under investigation. To ensure that the
findings in a study sample have a strict equivalence with
the overall population parameters, a complete patient
population, of very large or infinite size, would be
required—an obvious logistic impossibility. In the ab-
sence of such methods, confidence intervals provide a
useful tool to determine a range of values in which the
parameters of the target population are likely to reside. A
certain degree of confidence is chosen that indicates how
sure the investigator is that the true value lies within the
given range.

In the medical community, 95% confidence intervals
(95% CI) are commonly used in the presentation of
results. A 95% CI represents a range of values that will
include the true population parameter in 95% of all
cases. In other words, if you took an infinite number of

samples of the same size, from the same overall popula-
tion, and calculated the CI in the same manner, the true
parameter in the overall population would be included
95% of the time. There remains a 5% chance that the
true population parameter is outside the 95% CI. If an
investigator wishes to be more sure that the confidence
interval based on the patient sample includes the true
population value, a 99% CI can be chosen, but the 99%
CI is wider than a 95% CI because there is a smaller
degree of uncertainty. The higher the level of confidence,
the wider the confidence limits. A 95% CI can be com-
puted for means, proportions, differences of means and
proportions, risk ratios, odds ratios, sensitivity, specific-
ity, and so forth. Again, computing confidence intervals
only makes sense if the sample is representative of a
larger population for which inferences can be drawn.
The width of the confidence interval indicates the pre-
cision of an estimate and is dependent on the variation in
the data and the number of subjects in the sample. The
width of the 95% CI and the standard error (SE) are
closely related: for samples of sufficiently large size
(n = 60), the 95% CI is usually calculated as the
mean * 2 X SEM. (The factor, with which the SEM is
multiplied, varies with the samples size. For n = 60 it is
exactly 2, for n = 10 it is 2.3, for an infinitely large
sample size, the factor is 1.96. But the choice of a factor
2 is a good approximation in the vast majority of appli-
cations.) The greater the dispersion of data and the
smaller the sample size, the larger the SE and the wider
the confidence interval. Conversely, the less scattered the
data and the larger the patient sample, the narrower the
confidence interval. A wide confidence interval indicates
that the sample data are insufficient for precisely esti-
mating the effect in the overall population and must be
interpreted cautiously, regardless of whether or not the
results are statistically significant.'”*®

Example

Twenty-four hour urine measurement of vanillylman-
delic acid (VMA) represents a sensitive and specific test
in the diagnosis of pheochromocytoma patients.'”*° Let
us consider a hypothetical sample of 10 patients with
pheochromocytoma. The urine measurements in these
patients yielded VMA values of 50, 60, 70, 80, 90, 100,
110,120, 130, and 140 mg/24 h (normal: <7 mg/24 h).
The 95% CI for the mean VMA value ranges from 73.3
to 116.7 mg/24 h (sometimes displayed as: 95% CI
(73.3,116.7 mg/24 h). The first value is called the lower
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and the second value the upper confidence limit. We can
be 95% confident that the interval 73.3 to 116.7 mg/24
h contains the true population mean for pheochromo-
cytoma patients. If our sample size were five times larger
and had the same range and value distribution, the 95%
CI would be (86.8, 103.2 mg/24 h). A sample size 10
times larger would result in a 95% CI of (89.2, 100.8
mg/24 h). Again, the larger the sample size, the narrower
the 95% CI, and the more precise the sample estimate. If
we had a sample of 10 patients with less variability than
in our previous sample (mean VMA values: 91, 92, 93,
94, 95, 95, 96, 97, 98, 99), the 95% CI would be much
smaller (93.1, 96.9). This simple example shows that the
main determinants of the width of a confidence interval
are the sample size and the data dispersion.

How to interpret type | and type Il errors, sample
size computations, and power

The findings of a study comparing two groups of pa-
tients can be wrong in two ways’":

1. The results might lead to the erroneous conclusion that
there is a difference between the study groups when, in
reality, there is none.

2. The results might lead to the erroneous conclusion that
there is no difference between the study groups when, in
reality, a difference exists.

The first situation represents a false-positive result
and is called a type I error. The bound that we put on the
probability of committing a type I error is named a/-
pha?' Alpha is also referred to as the level of statistical
significance or significance level. Number 2 in the pre-
ceding list represents a false-negative result and is called
a type II error. The probability of committing a type II
error is referred to as beta.>"*

An alpha of 0.05 is commonly used in medical re-
search. This means that a 5% chance of obtaining a false-
positive result is considered acceptable. Alpha is the
benchmark to which p values (discussed later in the ar-
ticle) are compared. If the p value is larger than alpha, a
result is said to be nonsignificant. On the other hand, if
the p value is smaller than the benchmark alpha, the
findings are statistically significant. In other words, a/-
pha s the threshold p value below which a result is called
statistically significant. Beta, the false-negative rate, is
complementary to the power of a study. In medical sci-
ence, beta is commonly assumed to be at a level of 0.2 or
0.1, indicating a power of 80% or 90%, respectively.
Power is defined as the probability of finding a statisti-

cally significant result (of rejecting the null hypothesis)
in a study, if the populations are truly different.”’ The
choice of adequate power in a study is critical because
investigators and funding agencies must be confident
that an existing difference in the overall population can
be detected using the study sample. If, for instance, the
power in a randomized controlled trial is setat 90% (beza
of 10%) and a true difference exists between the study
arms, we would be able to detect that difference in 9 out
of 10 cases if the trial were repeated an infinite number
of times.

The power of a study is dependent on the following
factors®"**:

1. The extent of the true difference between the populations
under investigation

2. The alpha level (accepted rate of false-positive results)

3. The sample size

With larger sample sizes, larger true differences be-
tween the populations from which the patient samples
have been drawn, or higher acceptance of false-positive
results, the power of the study increases.

Before initiating the study, power and sample size
must be determined. For sample size computations, in-
vestigators start by defining a clinically meaningful dif-
ference between treatments A and B, which is believed to
be true for the overall patient population. This differ-
ence is usually based on preliminary data of small phase
IT studies or retrospective reviews, but is sometimes spec-
ified according to clinical intuition. If the investigator is
satisfied with an 80% probability of obtaining a statisti-
cally significant difference between the study groups, if
such a difference truly exists, a smaller sample size is
required than if 90% power were chosen. In other
words, a larger sample size corresponds to a higher level
of power. Ideally, both alpha and beta would be setat 0 to
avoid false-positive and false-negative findings. This
would require a prohibitively large sample size, render-
ing any trial unfeasible. For a patient sample of given
size, there is a tradeoff between alpha and beta: the more
stringent alpha (the lower the false-positive rate), the
higher beza (increased rate of false-negative results, lower
power), and vice versa.”*** In general, one should choose
a small alpha level if avoiding false-positive results is
particularly important (eg, testing the efficacy of a new
chemotherapy regimen with serious adverse effects).
Similarly, a small beza level should be chosen if obtaining
a false-negative result would be deleterious; for example,
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Table 3. Sample Size Computations* for a Study Showing the 5-Year Overall Survival Difference Between Colorectal Cancer

Patients With and Without Disseminated Tumor Cells

Expected 5-y overall survival

of patients with of patients without

Expected 5-y overall survival

disseminated tumor cells (%) disseminated tumor cells (%) Alpha Beta Total sample size
45 75 0.05 0.20 79
45 75 0.05 0.15 89
45 75 0.05 0.10 105
50 75 0.05 0.20 108
50 75 0.05 0.15 124
50 75 0.05 0.10 145
55 75 0.05 0.20 161
55 75 0.05 0.15 185
55 75 0.05 0.10 215
55 70 0.05 0.20 287
55 70 0.05 0.15 328
55 70 0.05 0.10 384

*All sample size computations are based on a 25% positivity rate of the samples, a type I error probability of 0.05 (two-sided), a projected accrual period of 3 y,
and a followup interval of 5 y. The program used for sample size computations was based on references 61 through 65.

if an investigator wants to demonstrate the superiority of
a new, less invasive surgical procedure over an estab-
lished procedure associated with considerable short- and
longterm sequelae. The false conclusion that the new
procedure is not as effective as the standard procedure
would put new patients at risk of suffering worse
outcomes.

It is imperative that the authors of a clinical trial re-
port the parameters on which the computed sample size
is based.**** Despite this, many investigators fail to do
$0.#?>?¢ If no information about power calculations is
reported, the reader does not know if:

1. No sample size requirement was computed.

2. The investigators were unable to accrue the initially com-
puted patient number.

3. The trial was extended beyond the initially computed sam-
ple size to obtain higher statistical power.

4. The investigators stopped the trial earlier than anticipated
because the interim results were favorable.”

Example: table 3

There is suggestive evidence in the medical literature
that colorectal cancer patients with single disseminated
tumor cells in bone marrow and peritoneal lavage sam-
ples have a higher risk of suffering a relapse and a shorter
overall survival compared with patients without dissem-
inated tumor cells.””*” Let us say that we want to design
a study that allows us to evaluate the prognostic signifi-
cance of disseminated tumor cells in colorectal cancer
patients. Assuming the 5-year overall survivals for stages
I and II colorectal cancer patients with and without dis-

seminated tumor cells to be 45% and 75%, an alpha
level of 0.05, and a power of 80%, the required number
of patients is 79 (Table 3). Table 3 displays sample size
computations that would answer the same research
question using different overall survival and power esti-
mates. It is important to realize that sample sizes are
highly dependent on the assumed estimated difference
in survival rate and the chosen power.

How to interpret a p value

Remember that statistics help us to make inferences
from the patient sample under investigation to the over-
all population. To understand the meaning of a p value,
it is necessary to understand the meanings of null and
alternative hypotheses. The null hypothesis of a study
often is the hypothesis that no difference exists between
the study groups. In a randomized clinical trial, for
example, the null hypothesis states that there is no dif-
ference between study arms for the end point under
investigation (eg, disease-free or overall survival, post-
operative complications, postoperative mortality, and so
forth). Conversely, the alternative hypothesis (the one
the investigator wants to demonstrate) is that there is a
significant difference between study arms. Let us assume
that in the overall population, the end points for patients
assigned to arms 1 and 2 of a two-armed randomized
clinical trial are identical and the intervention has no
effect. Nonetheless, it is possible that certain patients
respond more favorably to the intervention than others.
As we deal with a sample of the overall population it can
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be hypothesized that a difference might occur because of
chance alone (eg, sampling variations). The p value is the
probability that the difference between arms 1 and 2 is at
least as large as that observed in the sample if there is
actually no difference in the overall population (assum-
ing the null hypothesis).

Example
Let us consider a randomized clinical trial comparing
preoperative radiation therapy plus surgery (arm 1) ver-
sus surgery alone (arm 2) in the treatment of resectable
esophageal cancer. Assuming that overall survival is the
primary end point, the null hypothesis of the investiga-
tion states that survival time in both arms is the same.
Conversely, the alternative hypothesis claims a survival
difference between patients randomized to arm 1 and
those randomized to arm 2. Let us suppose that after
completing intervention and followup, patients in arms
1 and 2 had median overall survivals of 18 months and
22 months, respectively, and that the p value for this
survival difference was p = 0.02. Interpretation of this
result is: If the new intervention has equivalent overall
survival to the standard procedure (if the null hypothesis
were true), there is a 2% chance of observing a survival
difference as large as or larger than the one observed. In
other words, if truly there were no difference between
the treatments in the overall population, and the trial
were repeated an infinite number of times, an overall
survival difference of 4 months or more would be ex-
pected to occur by chance in only 2 of every 100 such
trials. If the p value is small, the probability of obtaining
the observed difference by chance alone is low, and one
usually assumes that the null hypothesis does not hold.
Conversely, if the p value is large, it is conceivable that
the data are consistent with the null hypothesis, which
cannot be rejected.

The following issues about the interpretation of a p
value are of prime importance:

1. A pvalue is the probability of getting a difference at least as
large as the one observed, under the assumption that the
null hypothesis is true (assuming that there is no difference
between the populations under investigation). A p value
without a null hypothesis is meaningless. One should
never interpret a p value without knowing the null hypoth-
esis with which it is associated.

2. A highly significant p value (eg, p = 0.001) tells you that
the difference observed in your study would occur very
rarely (in only 0.1% of all cases) if truly there were no
difference between the study groups. The p value does not

prove that the alternative hypothesis is true. p Values are
based on the assumption that the null hypothesis is true
and only provide evidence against the null hypothesis, not
evidence to support the alternative hypothesis.

3. The p value depends on the existing difference between the
study groups, the scatter of the data (the standard devia-
tion), and the sample size. The larger the difference be-
tween the study groups, the smaller the standard deviation,
or the larger the sample size, the more significant the p
value. In light of these factors that influence the magnitude
of the p value, the benchmark of 0.05 should not be used as
a clear cutoff between relevant and unimportant results.
Guyatt and colleagues® emphasized this fallacy: “Why use
a single cut-off point [for statistical significance] when the
choice of such a point is arbitrary? Why make the question
of whether a treatment is effective a dichotomy (a yes-no
decision) when it would be more appropriate to view it as
a continuum?”

4. A nonsignificant p value does not demonstrate that the
null hypothesis is true. As mentioned previously, large p
values might be simply due to small sample sizes or highly
scattered data. A nonsignificant p value tells you only that
the evidence is not strong enough to reject the null hypoth-
esis.’"??

5. A p value is claimed to be statistically significant if it is
smaller than the threshold of statistical significance (a/-
pha). The latter is most commonly set at 0.05, but, in
certain situations can be lower (see multiple comparisons).

6. Frequently researchers make statements such as “the asso-
ciation was found to be statistically significant (p
value < 0.05).” What does this mean? The p value could be
0.049 or 0.00001. It is much more informative and helpful
to the reader to give the exact p value and even better to
display the confidence interval.'”

Despite the fact that a p value of 0.05 is frequently
considered a default benchmark for significant results,
the instances discussed earlier show that this is a falla-
cious standard. Interpreting a p value is sensitive to a
host of factors, all of which should be taken into account
by a conscientious researcher.

How to interpret one-tailed versus two-tailed

p values

An investigator who compares a new treatment to the
standard treatment may have reason to believe that the
new therapy is superior based on phase II studies or
retrospective reviews. Should a one-tailed (one-sided) or
two-tailed (two-sided) p value be used to compare these
treatments? Both one- and two-tailed p values are based
on the null hypothesis (that the treatments are equally
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effective). A two-tailed (or two-sided) p value represents
the probability that the difference between two
treatments—assuming the null hypothesis to be
true—is as large or larger than observed, with either
treatment being superior to the other. Conversely, a one-
tailed (one-sided) p value represents the probability that
the difference observed would have occurred by chance
alone, with one treatment being superior to the other as
specified in the alternative hypothesis.”> The one-tailed p
value is usually half of the two-tailed p value. Although
two-tailed p values are commonly used throughout
medical literature, some investigators argue that one-
tailed p values are appropriate in certain situations. Here
are some general guidelines about this issue:

1. Unless you can state with absolute certainty that a differ-
ence between two interventions can only go in one direc-
tion, a two-tailed p value should be used.* For instance,
although you might believe that a new radiochemotherapy
regimen for rectal cancer patients does improve overall
survival, patients might actually die earlier from unexpect-
edly severe side effects.

2. If you use a one-tailed p value, the alternative hypothesis
must be stated in advance (a priori hypothesis), specifying
the intervention believed to be superior.**

3. There have been instances in medical science when, at the
end of a trial yielding a marginally significant two-tailed p
value (eg, 0.06) for the difference between interventions,
the p value was switched to a one-tailed p value (0.03) to
obtain a statistically significant result. Such behavior is
misleading and should be abandoned. Some authors have
suggested that the level of statistical significance should be
set at 0.025 if a one-tailed p value is used.>>*

Clinical versus statistical significance of a result

As previously mentioned, the magnitude of the p value
depends on the sample size. If the sample size is large,
even tiny differences between study groups will become
statistically significant. The question is whether these
small differences are clinically relevant. Statistically sig-
nificant results may well prove to be trivial.> On the
other hand, even though the p value might not be sta-
tistically significant (eg, from a small sample size), the
differences found between the study groups might ap-
pear to be clinically relevant.>** Frequently, only p values
are reported in the medical literature but they lose their
relevance if the sample sizes are large. In these situations,
confidence intervals are helpful and informative in in-
terpreting study findings and should be provided in ad-

dition to p values.

Example

Let us compare the mean length of hospital stay after
open versus laparoscopic appendectomy. We will hy-
pothesize that the true mean length of hospital stay is
3.16 days for patients undergoing laparoscopic surgery
and 3.20 days for patients having open appendectomy
and that the standard deviation for length of stay is 0.5
days. Is this difference of any clinical relevance? Almost
certainly not, as the difference (0.04 days) is only ap-
proximately 1 hour. If, 4,908 patients or more (Sample
size computation based on alpha of 0.05, beta of 0.2, and
standard deviation of 0.5 days) are evaluated, half of
them undergoing open appendectomy and the other
half having laparoscopic surgery, the p value will become
significant at a level of 0.05. If 10,678 patients (and this
large patient number is not uncommon for retrospective
secondary data analyses) are in the study, the p value
becomes highly significant (0.001), and with 14,004
patients the p value becomes extremely significant
(0.0001). Conversely, let’s assume that laparoscopic ap-
pendectomy is truly associated with a shorter length of
hospital stay compared with the open procedure and
that the difference is half a day (3.2 days for laparoscopic
appendectomy and 3.7 days for open appendectomy).
Considering that length of hospital stay is correlated to
hospital costs,”*® a difference in length of stay of 0.5
days between patients undergoing open and laparo-
scopic appendectomy undoubtedly represents a clini-
cally important finding. If less than 34 patients are eval-
uated, the p value will not be statistically significant at an
alphalevel of 0.05, demonstrating once again that one of
the main determinants of statistical significance is sam-
ple size.

How to view confidence intervals and p values as
being complementary

Researchers are more likely to report p values than con-
fidence intervals.**** But confidence intervals provide
much more information to the astute reader than do p
values alone™'”*® and are now requested by many jour-
nals in the reporting of study findings."*” Although p
values and confidence intervals might seem different at
first glance, closer scrutiny reveals that they are comple-
mentary. Both are computed using the same underlying
assumptions. If the 95% confidence interval includes
the value of the null hypothesis (eg, 0 for the difference
between means, or 1 for a risk ratio and or odds ratio),
the p value will be greater than 0.05. On the other hand,
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Sample size n = P-value >0.05

Sample size 4n P-value < 0.05

Relative risk of smokers vs. non- smokers of experiencing gastric ulcers

Figure 1. Point estimates and 95% confidence intervals for two
samples. If the 95% confidence interval includes 1, the p value is
not significant.

if the 95% CI does not include the value of no differ-
ence, the p value will be less than 0.05. Confidence
intervals are also very helpful in interpreting nonsignif-
icant p values.™'” If the range of the 95% CI of differ-
ences or risk ratios includes values that are clinically
trivial, one can assume the results to be irrelevant with
higher confidence. If the 95% CI includes values that
you find clinically important, the study should be con-
sidered inconclusive because a small sample size might
be a reason for not reaching statistical significance.

Example

It is well known that smokers are at higher risk for gastric
ulcers compared with nonsmokers.*** Let us assume
that a study comparing the incidence of gastric ulcers of
smokers versus nonsmokers found a relative risk and a
95% confidence interval of 2.9 (0.9, 4.9). Because the
95% confidence interval includes 1 (the value of the null
hypothesis), the corresponding p value will be nonsig-
nificant. As explained previously, this does not necessar-
ily demonstrate that smokers do not have an increased
risk for gastric ulcers compared with non-smokers. The
width of the 95% confidence interval is considerable
(because of a small sample size), ranging from a relative
risk 0f 0.9 to 4.9. So smokers might be 0.9 times through
4.9 times more likely to develop gastric ulcers compared
with nonsmokers. This confidence interval certainly
covers values that have clinical importance, so, the find-
ings of this hypothetical study should not be declared
negative but rather inconclusive. Let’s say that we had
assessed a sample size four times larger than the initial
study population, the 95% confidence interval would
have narrowed to (1.9, 3.9), and, because the null value
is not included anymore, the p value would have been
significant. This example is graphically displayed in Fig-

ure 1.

Beware of multiple comparisons and

subset analyses

If no difference exists between two groups of patients in
the overall population (if the null hypothesis were true),
the p value tells you how likely it is to get a difference at
least as large as observed by coincidence. As explained
previously, to limit the probability of a false-positive
(type 1) error, the threshold of statistical significance
(alpha level) is usually set at 0.05. If you test multiple
independent null hypotheses—all of which are true—in
the same investigation, the probability that one p value
might become statistically significant by chance alone
increases. Multiple comparisons carry the risk of provid-
ing false-positive results.”>*

Most investigations in the medical literature test
many different null hypotheses,****“® so the probability
of getting a statistically significant result by coincidence
is likely to exceed the standard of 5%. For instance, if
you test 10 different independent null hypotheses, the
probability of obtaining a statistically significant result
at an alpha level of 0.05 is 40% (1-0.95'°), for 50 null
hypotheses it is 92% (1-0.95°°), for 100 null hypotheses
over 99% (1-0.95'%°).** (The numbers in parentheses
represent the formulae to compute the risk of obtaining
a false-positive result.) p Values must be interpreted cau-
tiously if many independent null hypotheses are tested.

Often measures are taken to decrease the risk of ob-
taining false-positive results caused by multiple compar-
isons. For instance, the Bonferroni method**—the sim-
plest and most often used technique to adjust for
multiple comparisons—divides the alpha level by the
number of independent hypotheses tested.”” If you test 5
hypotheses, the level of statistical significance should be
decreased to 0.01 (0.05/5); if you test 10 different null
hypotheses, the level of statistical significance should
become 0.005 (0.05/10). The Bonferroni method has
conservative properties and should not be used for ad-
justing for more than 10 hypotheses.*

Subset analyses are common in medical literature and
are similar to multiple comparisons about their potential
risk of obtaining spurious results, and their requirement
for cautions interpretation.”** After evaluation of the
outcomes in the overall sample, study findings are as-
sessed in subsets of patients (eg, stratified for age, gender,
preexisting risk factors, severity of the disease, and so
forth). Many investigators perform subset analyses re-
gardless of the overall outcomes of the study. If the over-
all outcomes of a trial show a significant difference be-
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tween study groups, subset analyses might be performed
to identify patients who particularly benefit from the
treatment. Conversely, if the overall outcomes in a study
are negative (no statistically significant difference be-
tween the study groups), subset analyses are frequently
performed to show some benefit of the treatment in at
least a certain subset of the patients. The dangers of
performing subset analyses are well known.” As dis-
cussed previously, the increased rate of false positivity
derives from making multiple comparisons, testing mul-
tiple different hypotheses, and as a result, getting statis-
tically significant results at a level that exceeds alpha even
if all tested null hypotheses were true. If, on the other
hand, an investigator finds nonsignificant results in sub-
groups, the conclusion that in reality there is no differ-
ence within these subsets might be erroneous too, be-
cause the study was not designed and adequately
powered to detect a significant difference in the patient
subsets. So, subgroup findings should be viewed as ex-
ploratory, subject to confirmation in another trial.
There is ongoing debate in the medical literature
about whether, and how, to adjust for multiple compar-
23444799 The following guidelines are crucial in the
interpretation of study subgroup analyses:

isons.

1. A priori versus a posteriori hypotheses: It is important to
make the distinction between hypotheses that were created
before performing the study (a priori) versus hypotheses that
were stated after the conduct of the study (a posteriori).***
A priori stated hypotheses do not carry the risk that the
investigator was influenced by the readily available data, so
are less prone to erroneous conclusions. If hypotheses are
stated a posteriori, it is possible that the investigator looked
at different patient subsets until significant results were
found. This phenomenon is often referred to as “data min-
ing,” “data dredging,” or “fishing expedition.” Investiga-
tions for which hypotheses are formulated after the study
has been conducted should be viewed more as hypothesis
generating rather than hypothesis testing, and even more
so if they look at patient subsets and perform multiple
comparisons. >

2. Often investigators test multiple hypotheses, but report
only the statistically significant findings.”” This is mislead-
ing and potentially dangerous if the study has clinical im-
plications. It is imperative to clearly state and report all
tested hypotheses and associated p values.

Example
Inflammatory bowel disease (IBD) represents a public
health problem affecting approximately 1 of 1,000 indi-

viduals in Western countries. The etiology and patho-
genesis of IBD await additional clarification. It is gener-
ally accepted that IBD occurs predominantly in
genetically susceptible people®** yet many genetic loci
involved in the pathogenesis of this disease need to be
determined.” Satsangi and colleagues™ performed a
genome-wide search for susceptibility genes in patients
with IBD. The authors investigated 260 different ge-
netic loci for potential linkage to IBD. Because 260 null
hypotheses were tested, there was a definite risk of ob-
taining false-positive results if the standard alpha level of
0.05 was used. So the investigators correctly chose a level
of statistical significance of p < 0.001, which is 50 times
smaller than the commonly used cutoff (p < 0.05).
Also, the investigators viewed their study as hypothesis
generating rather than hypothesis testing.

How to interpret survival curves

A survival curve is a graphic presentation of time to event
data. The term survival curve is somewhat misleading, as
not only time to death, but time to any event can be
graphically displayed.” For instance, a “survival” curve
can plot time to tumor recurrence, time to extubation
after a surgical procedure, time to rejection of a kidney
transplant, and so forth. The starting point of a survival
curve, or time zero, marks the beginning of the period of
observation for the event under investigation. For in-
stance, time zero can be when the patient enters a pro-
tocol, the time point of randomization, the day of oper-
ation, start of adjuvant chemotherapy, and so forth. By
definition, the start of a survival curve is always set at
100% because all patients whose clinical course is graph-
ically displayed are alive at this point in time. Each step
down on a survival curve represents the occurrence of an
event. If two (three) patients experience the event under
investigation, the step down is twice (three times) as
large as that for one event.

In the majority of survival analyses, some patients are
“lost” before the event occurs, or before followup is com-
plete for the study. This phenomenon occurs frequently
in investigations that enroll patients over many years. So
the length of followup varies greatly among patients.
Patients who do not experience the event of interest are
referred to as censored, cither during the study (eg, be-
cause of loss to followup) or at the end of the study.>
Censoring enables patients to provide valuable informa-
tion to the study despite not being followed over the
entire investigation. When a patient is censored, the sur-
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vival curve remains horizontal. The number of patients
at risk decreases, so, the next event will result in a larger
step down than the previous one.

It is important that survival curves indicate when a
subject is being censored. Graphically this is usually
done using tick marks. Display of censored subjects en-
ables the reader to deduce how the number of patients at
risk has decreased.

To compute the proportion of patients surviving
through a given day, one needs to divide the number of
patients at risk at the end of a day by the number of
patients at risk at the beginning of the day, excluding
censored patients both from the numerator and the de-
nominator. To compute the proportion of patients sur-
viving over a certain time period, multiply the propor-
tion of patients surviving day 1, day 2, day 3, and so
forth.*

As with means, proportions, and differences in means
and proportions, one can compute the 95% confidence
intervals around survival curves.”” Although any survival
curve is a graphic presentation of time to event data of a
finite sample, as with any statistic, the true population
survival curve likely differs from that of the sample. We
can be 95% sure that the true survival curve of the over-
all population lies within the 95% confidence interval
limits. The smaller the sample size, the larger the confi-
dence limits around the survival curve.

The survival curve allows us to easily obtain the me-
dian survival (or time to recurrence, and so forth) by
crossing a horizontal line through the survival curve at
the 50% mark of the ordinate. The number of months or
years at the abscissa of this crossing point represents the
median survival time (Fig. 2). If the horizontal line
drawn from the 50% mark of the ordinate does not cross
the survival curve, less than half the patients have expe-
rienced the event and the median time to event cannot
yet be computed.

What is a confounding variable?

Before defining a confounding variable it is important to
understand the meaning of, and the association be-
tween, a predictor variable and an outcome. Commonly,
studies are designed to show a link between a predictor
variable (independent variable) and an outcome (depen-
dent variable). Predictor variables can be either a diag-
nostic or therapeutic interventions (eg, new surgical
therapy, new diagnostic procedure) or a risk or prognos-
tic factor such as age, patient comorbidity, tumor size,
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Figure 2. Hypothetical survival curve comparing two groups of colo-
rectal cancer patients. The solid line survival curve plots time to
death for node negative, the dotted curve for node-positive patients.
In the group without lymph node metastases, only one patient dies
at 15 mo of followup. Nine node-negative patients die, two (step is
twice as big) at 12 mo of followup. Median survival for the node-
positive group is approximately 10 mo; the median survival for the
negative group cannot be computed because fewer than half of the
subjects are deceased at the end of the study. Note that 16 patients
were censored, and that the survival curve remains horizontal during
censoring.

lymph node status, and so forth. Frequently assessed
outcomes in surgical literature are disease-free survival,
overall survival, response to a treatment, and postopera-
tive morbidity. A confounding variable (confounding
factor, confounder) is an extrinsic factor that is linked to
the predictor variable and also impacts the outcome. The
perceived association between the predictor and the out-
come variable is distorted because of the confounder.”

Example

An intuitive example to illustrate confounding is the
relationship of frequent bar visits to the development of
liver cirrhosis. We all know that frequent bar visits in and
of themselves are of no danger to the liver if the person
going to the bar only consumes soft drinks and watches
a basketball game. It is obvious that frequent bar visitors
have a tendency to consume alcohol, which is unequiv-
ocally linked to developing liver cirrhosis.”®** Alcohol
consumption in this case is the confounding variable
(Fig. 3). If we categorize a sample of people by whether
they are frequent or nonfrequent bar visitors and assess
the relationship of this variable with liver cirrhosis, we
most likely will find a high degree of association. But if
we stratify the population of frequent bar visitors by the
confounding factor (alcohol consumption), frequent bar
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Figure 3. Relationship between putative risk factor, confounding
variable, and outcome.

visits would no longer be associated with developing
liver cirrhosis.

How to interpret multivariable analyses
In medical literature—especially in nonrandomized ob-
servational studies—confounding can be a major prob-
lem. For instance, in an observational study comparing
two treatments, patients undergoing treatment A might
substantially differ from patients having treatment B
with respect to factors such as age, gender, race, socio-
economic status, comorbid diseases, and tumor staging
and grading. All of these are probably also related to the
outcomes of interest, so are potential confounding vari-
ables. The investigator seeks to assess the relationship
between the primary predictor variable (type of therapy,
A versus B) and the outcomes under investigation after
the potential distortion through covariates has been
eliminated. The use of stratification when multiple po-
tential confounders are present is cumbersome. The pre-
ferred method of adjusting for many confounding vari-
ables simultaneously is multivariable analyses.
Depending on the type of outcome variable, one of
three different multivariable analyses is generally appro-
priate: For continuous outcomes (eg, postoperative
length of hospital stay), multiple linear regression anal-
ysis is appropriate; for categorical or dichotomous out-
comes (eg, presence of metastases), multiple logistic re-
gression analysis is useful; and for time to event

outcomes (eg, time to death or time to recurrence), the
proportional hazards regression analysis is often chosen
(Table 4). For any outcome, multivariable analyses pro-
vide the risk-adjusted (often called “independent”) im-
pact of the primary predictor variable on the outcomes
after controlling (risk-adjusting) for the potential con-
founding of all other covariates.

Example

Consider a prospective observational study comparing
open versus laparoscopic colectomy for sigmoid diver-
ticulitis with end points such as postoperative morbidity
and mortality, length of hospital stay, operating time,
and cost. Let us assume that study findings show lapa-
roscopic colectomy to be clearly superior to open colec-
tomy for these end points. Does this mean that laparo-
scopic colectomy is truly better than open surgery? Not
necessarily. It is conceivable that patients undergoing
open versus laparoscopic colectomy differ in important
risk factors. Patients receiving open colectomy might be
older, sicker, have more complicated disease, have lower
socioeconomic status, or be operated on by less experi-
enced surgeons. Any of these factors might confound the
relationship between the primary predictor variable
(type of procedure: open versus laparoscopic colectomy)
and the end points. To obtain the true benefit (if any) of
laparoscopic colectomy, multivariable analyses must be
performed. All potential confounding variables must be
included in the statistical models to adjust for the differ-
ences between the patient subsets undergoing open and
laparoscopic procedures. Again, use of multivariable
analysis is particularly important in nonrandomized tri-
als because imbalances between the study groups can be
expected. Randomization helps to distribute known and
unknown confounding variables equally among arms, so
analyses of a randomized controlled trial do not neces-
sarily require multivariable adjustment.

Table 4. How to Interpret Positive and Negative Beta Coefficients*

Type of multivariable analysis

Positive beta coefficient

Negative beta coefficient

Multiple linear regression
analysis

Mean value of the outcome increases with
presence of risk factor (if dichotomous) or as
independent continuous variable increases.

Mean value of the outcome decreases with
presence of risk factor (if dichotomous) or as
independent continuous variable increases.

Multiple logistic regression
analysis

Probability of the outcome increases with
presence of risk factor (if dichotomous) or as
independent continuous variable increases.

Probability of the outcome decreases with
presence of risk factor (if dichotomous) or as
independent continuous variable increases.

Proportional hazard regression
analysis

Hazard increases with presence of risk factor
(if dichotomous) or as independent continuous
variable increases.

Hazard decreases with presence of risk factor
(if dichotomous) or as independent continuous
variable increases.

*Presence of risk factors is coded as 1, lack of risk factor as 0.
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Table 5. Hypothetical Multiple Linear Regression Model: Comparison of Length of Hospital Stay Between Open and

Laparoscopic Appendectomy

Variable Beta coefficient Standard error p Value 95% Confidence interval
Laparoscopic surgery —0.67 0.04 <0.0001 [—0.74, —0.61]
Age (y) 0.02 0.001 <0.0001 [0.019, 0.024]
COPD 0.37 0.04 <0.0001 [0.29, 0.45]

COPD, chronic obstructive pulmonary disease.

In all three types of multivariable analysis, the vari-
able’s beta coefficient (not to be confused with the pre-
viously mentioned rate of false-negative results) indi-
cates how the dependent variable responds to changes of
the independent variable, after adjusting for all other
covariates in the model. As the type of model changes for
different types of end points, the interpretation of the
beta coefficient changes too (Table 4).

In multiple linear regression analysis, the outcome is
continuous. A positive beta coefficient signifies that the
independent variable and the mean value of the depen-
dent variable vary in the same direction (either both
increasing or both decreasing). Conversely, a negative
coefficient indicates that while the independent variable
increases the mean outcome decreases, and vice versa.

In multiple logistic regression analysis, the appropri-
ate statistical tool to assess the risk-adjusted impact of
covariates on categoric end points, the logit is modeled.
The logit is the natural logarithm of the odds of experi-
encing the outcomes. The beta coefficient in logistic
regression models expresses how the logit changes with
changes in the independent variable. Although the logit
is difficult to interpret on its own, it can be easily trans-
formed into the odds ratio by taking the antilogarithm
(exponentiating) of the beta coefficient.

As mentioned previously, proportional hazards re-
gression is frequently used if a time to event end point is
being evaluated. Time to event outcomes incorporate
more information than dichotomous end points if the
followup period is sufficiently long (eg, we not only
know whether or not death occurred but also how long
after cancer resection).’**** In proportional hazards re-
gression analysis, the beta coefficient represents the
change in the natural logarithm of the relative hazard for
a one-unit change in the independent variable. The rel-
ative hazard represents the ratio of instantaneous risk of
experiencing the event for patients having a certain risk
factor to the instantaneous risk of experiencing the event
for patients where this risk factor is absent. Similar to the
coefficients in logistic regression analyses, the relative

hazard is obtained by taking the antilogarithm of the
beta coefficient.

It is important to remember that larger beta coeffi-
cients, or smaller standard errors result in more signifi-
cant p values. This applies to all three multivariable tech-
niques. As a rule of thumb, a beta coefficient that exceeds
its standard error by a factor of two will likely be associ-
ated with a statistically significant result. It seems intui-
tive that an estimate associated with a large standard
error (which, as discussed previously, represents the pre-
cision of the estimate) is unlikely to be statistically
significant.

Example 1 (table 5)

Let us assume that we are performing a retrospective
analysis of open and laparoscopic appendectomy. The
outcome under investigation is length of hospital stay
measured in days, and the main predictor variable is the
type of procedure (laparoscopic versus open appendec-
tomy). Because we are dealing with a retrospective re-
view rather than a prospective randomized clinical trial,
it is conceivable that patients undergoing laparoscopic
operation were substantially different from open appen-
dectomy patients in regard to putative confounders such
as age and presence of chronic obstructive pulmonary
disease (COPD). To obtain the risk-adjusted difference
in length of hospital stay between open and laparoscopic
appendectomy, we must include age and presence of
COPD in the model.

Laparoscopic surgery. Let us remember that multi-
ple linear regression models the mean value of the out-
comes. The beta coefficient for laparoscopic surgery is
—0.67, meaning that the mean length of hospital stay of
patients undergoing laparoscopic appendectomy is 0.67
days shorter (because of the negative sign) than that for
patients undergoing open procedures after adjusting for
potential age and race differences. In this example, lapa-
roscopic appendectomy was coded as 1 and open appen-
dectomy as 0. The importance of correct interpretation
of coding becomes evident in this example: If open ap-
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Table 6. Hypothetical Multiple Logistic Regression Model: Comparison of Postoperative Infections Between Open and

Laparoscopic Appendectomy

Odds ratio and 95%

Variable Beta coefficient Standard error p Value confidence interval
Laparoscopic surgery —0.535 0.05 <0.0001 0.59 [0.50, 0.69]
Age (y) 0.007 0.001 <0.0001 1.007 [1.004, 1.01]
COPD 0.10 0.06 0.1 1.11 [0.96, 1.32]

COPD, chronic obstructive pulmonary disease.

pendectomy were coded as 1 and laparoscopic appen-
dectomy as 0, the beta coefficient would have been
+0.67, meaning that open appendectomy patients have
a length of hospital stay 0.67 days longer than laparo-
scopic appendectomy patients.

Age. The beta coefficient for age is 0.02. So, for each
year of age, the average length of hospital stay increases
by 0.02 days. In other words, 60-year-old patients are
expected to have a 0.8-day (40 X 0.02 days/year = 0.8
days) longer length of hospital stay than 20-year-old
patients.

Chronic obstructive pulmonary disease (COPD).
COPD was coded as present (1) and absent (0). The
presence of COPD is associated with hospital stays 0.37
days longer than those for patients who do not have
COPD. Again, the interpretation of coding is critical. If
absence of COPD were coded as 1, the beta coefficient
would have been —0.37.

For all three covariates in this model, the beta coeffi-
cients are more than twice as large as the standard errors,
so the p values are statistically significant. Also, the 95%
confidence intervals do not include the value of the null
hypothesis (for continuous outcomes = 0), indicating
that the p values are below the level of statistical
significance.

Example (table 6)

Let us consider the same study evaluating a different
outcome (postoperative infections). As a postoperative
infection either occurs or doesn’t (dichotomous out-
come), the multiple logistic regression model is the ap-
propriate statistical tool for the analysis. Remember that
multiple logistic regression analyses model the logit of
the outcomes (natural logarithm of the odds of experi-
encing the outcomes). The logit is difficult to interpret.
Thankfully, the logit can be easily transformed into the
odds ratio by taking the antilogarithm (exponentiating).
If the beta coefficient in a logistic regression model (and
in a proportional hazard regression analysis) is negative,
the corresponding odds ratio (hazard ratio) will be

smaller than 1. Conversely, if the beta coefficient is pos-
itive, the corresponding odds ratio will exceed 1.

Laparoscopic surgery. The beta coefficient is nega-
tive, resulting in an odds ratio smaller than 1. The odds
ratio (laparoscopic versus open surgery) of having a post-
operative infection is 0.59 (antilogarithm of —0.535).
Again, interpretation of the coding is critical. In this
example, laparoscopic appendectomy was coded as 1
(and open as 0). So, the odds of having a postoperative
infection after laparoscopic surgery is only 0.59 times
the odds of experiencing an infection after open surgery.
If open appendectomy were coded as 1, the beta coeffi-
cient would be +0.535, and the corresponding odds
ratio 1.69 (=1/.59), meaning that the odds of having a
postoperative infection after open surgery are 1.69 times
those of laparoscopic surgery. The change in coding
would not result in a change of the p value.

COPD. The beta coefficient is positive, so the corre-
sponding odds ratio is greater than 1. Patients with
COPD are 1.11 times more likely to experience postop-
erative infections than patients without COPD. Again,
if the coding were reversed (absence of COPD = 1,
presence of COPD = 0), the beta coefficient would
become negative (without a change in the absolute
value: —0.10), and the odds ratio would be 0.9 (=1/
1.11) and would be interpreted as the odds for non-
COPD patients relative to patients with COPD. The
95% confidence interval crosses the value of the null
hypothesis (for ratios = 1), resulting in a nonsignificant
p value. Also, the beta coefficient is smaller than twice
the standard error, which is indicative that the results are
not significant.

How to assess the performance of

statistical models

As described previously, statistical models are frequently
used to adjust for confounding factors that could explain
variability in outcomes. For example, two important fac-
tors that contribute to population variability in height
are gender and age. When analyzing height as a function
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of diet, one would naturally adjust for both gender and
age.

Statistical models can also be used in an attempt to
describe an outcome in terms of the factors that influ-
ence it. These types of models are called predictive mod-
els and their performance as such needs to be assessed.
For linear regression models, a common assessment tool
is the model R, which is the percent of variability in the
outcomes that is jointly explained by the predictor vari-
ables in the model. The higher the R?, the better the
prediction of the statistical model. For example, the R*
for a model of height (the outcomes) as a function of age
among young people 5 to 17 years old might be 0.53,
meaning that 53% of the variability of height is ex-
plained by age. Adding gender to the model might in-
crease the R* to 0.61. Adding factors related to diet
might further increase the R* to 0.73. Seventy-three per-
cent of the variability in height is now explained by the
predictor variables age, gender, and diet. The resultant
model would still leave 27% of the variability unex-
plained. The residual variability is from factors that have
not been included in the model or random variation.

For a dichotomous outcome analyzed by means of
logistic regression, the situation is somewhat more com-
plex. A predictive linear regression model attempts to
estimate the actual outcomes for each individual, and
the logistic regression model produces an estimate of the
probability of experiencing the outcomes for each indi-
vidual. The most common mechanism for describing
how well a logistic regression model predicts the proba-
bility of experiencing the outcomes is the c-index, which
is a concordance measure. For each pair of patients in
which one experiences the outcomes (the case) and the
other does not (the control), the pair is concordant if the
estimated probability of the outcomes is higher for the
case than for the control. The c-index is then the number
of concordant case-control pairs divided by the total
number of such pairs. A c-index close to 50% implies
that the model cannot discriminate between cases and
controls; a c-index close to 100% would indicate that,
given the characteristics in the model, the estimated
probabilities for cases are generally higher than those for
controls. It is useful to view the c-index as the area under
the receiver operating characteristics (ROC) curve,
which is a summary curve portraying how well the esti-
mated probabilities each separate the case population
from the control population.

What statistical test should be used?

The choice of the appropriate statistical test primarily
depends on several factors, including type of outcomes
(continuous, categorical, or time to event), whether the
data are paired (clustered) or unpaired, the number and
type of risk factors or covariates being analyzed, and the
assumed distribution of the data.

Outcomes

As discussed previously, the most frequently encoun-
tered end points in medical literature are continuous,
categorical, or time to event. Although continuous out-
comes cover a range (eg, tumor shrinkage measured in
millimeters after neoadjuvant chemotherapy), categori-
cal outcomes have only certain possible values (eg, di-
chotomous outcomes, such as response to chemother-
apy, presence of metastases, and so forth). The time to
event outcome is frequently used in surgical oncology,
where studies evaluate the time after tumor resection to
relapse or death.

Paired versus unpaired data
A paired (or clustered) data analysis should be used in
the following situations:

1. If two or more measurements are done in the same subjects
(eg, before and after an intervention)®' (this would be a
repeated measures design).

2. If we have matched pairs or clusters of subjects (eg, if, for
each patient in a certain sample, another patient or patients
with similar characteristics such as age, gender, race, and so
forth has been assigned in a comparison sample, or if there
are natural clusters such as members within families or
patients within the same hospital).”’

A paired test should be used to account for the lack of
independence in the data and to obtain accurate p
values.

Normal versus non-normal data distributions
Most statistical tests are either parametric (relying on a
specified data distribution) or nonparametric (not rely-
ing on a specified data distribution). Many parametric
tests rely on the normal distribution, which can be rep-
resented by the symmetric, bell-shaped Gaussian distri-
bution curve. Parametric tests are more powerful than
nonparametric tests if the underlying assumption about
specific data distribution is met (Table 7).

It is often difficult to decide whether or not a para-
metric test should be selected. A nonparametric test is
generally preferred in the following situations: If the
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Table 7. Most Commonly Used Statistical Tests in Medicine

Parametric test

Corresponding
nonparametric
test

Null hypothesis to be tested

Example

Continuous outcome

Two sample
(unpaired) 7 test

Mann-Whitney-U

test

Difference between means* from two
independent (unpaired) samples is 0.

To compare the mean* values of gamma glutamyl
transpeptidase between independent (unpaired)
samples of patients with and without history of
alcohol abuse.

One sample
(paired) # test

Wilcoxon matched
pair test

Difference between two
measurements on the same sample
(eg, before, after) or in matched
patients is 0.

To compare the mean* tumor size in one sample of
patients with rectal cancer before and after
neoadjuvant radiotherapy.

One way analysis
of variance

(ANOVA)

Kruskal-Wallis test

Difference between means* from
three or more unpaired/unmatched
groups is 0.

To compare the average number of sampled lymph
nodes in three unpaired/unmatched groups of
patients undergoing different resection methods of
pancreaticoduodenectomy for pancreatic cancer.

Repeated-measures

analysis,
including Friedman test To compare the trajectory of CEA values with respect
repeated (analogue of Difference between trajectory from to race (Caucasian, African American, others) of
measures repeated measures  three or more paired/matched groups  colorectal cancer patients at several different time
ANOVA ANOVA) is 0. points after resection.

Multiple linear To evaluate whether age is independently associated
regression Regression on There is no association between a with length of hospital stay in breast cancer patient
analysis ranks, other less predictor variable and the continuous  undergoing lumpectomy after adjusting for race,

frequently used
tests

outcome after adjusting for potential
confounding factors.

socioeconomic status, comorbidities, tumor stage, and
so forth.

Dichotomous/categoric outcome

Chi-square test or Fisher’s exact test

T

Difference between proportions of the
outcome from two (or more) in-
dependent/unmatched samples is 0.

To compare the proportion of successful endoscopic
retrograde cholangiopancreatography in unmatched
samples of elderly versus young patients with
choledocholithiasis.

McNemar's test

Probability of the outcome is not
more likely in one setting versus
another (eg, pre or post or with one
therapy versus another).

To compare the likelihood of response to proton
pump inhibitors versus histamine antagonists for
gastroesophageal reflux disease in matched patient
samples.

Multiple logistic regression analyses

There is no association between the
predictor variable and the categoric
outcome after adjusting for potential
confounding factors.

To assess the independent (risk-adjusted) impact of
length of postoperative immobility on the occurrence
of pulmonary embolisms after adjusting for age, race,
socioeconomic status, comorbidities, and so forth.

Time to event outcome

Log rank test (based on assumption that
the relative hazard does not change

over time)

Average hazards in the two groups are
equal.

To compare the survival curves of colorectal cancer
patients with liver metastases undergoing
radiofrequency ablation versus cryotherapy.

Cox proportional hazard regression analysis
(semi-parametric model, based on the
assumption that the hazard ratio [hazard
rate of group 1 divided by hazard rate of
group 2] is constant over time).”

The relative hazard of two patient
samples is one after adjusting for
potential confounding factors.

To assess whether patients with cancer of the
parathyroid gland with elevated postoperative
parathyroid hormone have a shorter overall survival
compared with patients with normal parathyroid
hormone after adjusting for potential confounding
variables such as age, gender, race, socioeconomic status,
tumor size, grading, staging, and so forth.

*Non-parametric statistics test for equality of medians rather than means.
For small sample sizes (< 20 patients), the chi-square test does not provide accurate results and Fisher’s exact test must be used. For large samples, both Fisher’s

exact test and chi-square test yield similar results.
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outcome is a score, eg, trauma score, comorbidity score,
and so forth; if many outliers are present; and if the
distribution of the data is clearly non-Gaussian. If it is
unclear whether or not the data allow analysis by a para-
metric test, it is usually better to use a nonparametric test
because the latter will yield slightly more conservative p
values.

In conclusion, basic knowledge about statistical com-
putations in medical literature is invaluable for critical
assessment of scientific findings and their implementa-
tion in clinical practice. The learning curve for appro-
priate interpretation of biostatistics is steep and the pro-
cess highly iterative. This article only scratches the
surface of statistics in medicine. Some topics have been
entirely omitted. Nonetheless, we hope that this vade
mecum will provide a useful resource for surgeons and
other physicians and will be a stimulus to enhance their
ability to interpret statistical analyses.
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