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Clinicians face two important questions as they read
medical research: is the report believable, and, if so, is it
relevant to my practice? Uncritical acceptance of
published research has led to serious errors and
squandered resources.1 Here, we will frame these two
questions in terms of study validity, describe a simple
checklist for readers, and offer some criteria by which to
judge reported associations.

Internal and external validity
Analogous to a laboratory test, a study should have
internal validity—ie, the ability to measure what it sets
out to measure.2 The inference from participants in a
study should be accurate. In other words, a research
study should avoid bias or systematic error.3 Internal
validity is the sine qua non of clinical research;
extrapolation of invalid results to the broader population
is not only worthless but potentially dangerous.

A second important concern is external validity; can
results from study participants be extrapolated to the
reader’s patients? Since a total enumeration or census
approach to medical research is usually impossible, the
customary tactic is to choose a sample, study it, and,
hopefully, extrapolate the result to one’s practice.
Gauging external validity is necessarily more subjective
than is assessment of internal validity.

Internal and external validity entail important trade-
offs. For example, randomised controlled trials are more
likely than observational studies to be free of bias,4 but,
because they usually enrol selected participants, external
validity can suffer. This problem of unsuitable
participants is also termed distorted assembly.5

Participants in randomised controlled trials tend to be
different (including being healthier6–8) from those who
choose not to take part, a function of the restricted entry
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criteria. The filtering process for admission to
randomised trials might, therefore, result in “a type of
hothouse flower, which cannot bloom or be successfully
removed beyond its special greenery.”5

Bias
Bias undermines the internal validity of research. Unlike
the conventional meaning of bias—ie, prejudice—bias in
research denotes deviation from the truth. All
observational studies (and, regrettably, many badly done
randomised controlled trials)9,10 have built-in bias; the
challenge for investigators, editors, and readers is to
ferret these out and judge how they might have affected
results. A simple checklist, such as that shown in panel 1,
can be helpful.11–14

Several taxonomies exist for classification of biases in
clinical research. Sackett’s landmark compilation,15 for
example, included 35 different biases. By contrast
Feinstein5 consolidated biases into four categories that
arise sequentially during research: susceptibility,
performance, detection, and transfer. Susceptibility bias
refers to differences in baseline characteristics,
performance bias to different proficiencies of treatment,
detection bias to different measurement of outcomes,
and transfer bias to differential losses to follow-up.
Another approach,3,11,16,17 which is often used, is to group
all biases into three general categories: selection,
information, and confounding. The leitmotif for all three
is “different”.17 Something “different” distorts the
planned comparison. 

Selection bias
Are the groups similar in all important respects?
Selection bias stems from an absence of comparability
between groups being studied. For example, in a cohort
study, the exposed and unexposed groups differ in some
important respect aside from the exposure. Membership
bias is a type of selection bias: people who choose to be
members of a group—eg, joggers—might differ in
important respects from others. For instance, both
cohort and case-control studies initially suggested that
jogging after myocardial infarction prevented repeat
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infarction. However, a randomised controlled trial failed
to confirm this benefit.15 Those who chose to exercise
might have differed in other important ways from those
who did not exercise, such as diet, smoking, and
presence of angina.

In case-control studies, selection bias implies that
cases and controls differ importantly aside from the
disease in question. Two types of selection bias have
earned eponyms: Berkson and Neyman bias. Also known
as an admission-rate bias, Berkson bias (or paradox)
results from differential rates of hospital admission for
cases and controls. Berkson initially thought that this
phenomenon was due to presence of a simultaneous
disease.5 Alternatively, knowledge of the exposure of
interest might lead to an increased rate of admission to
hospital. For example, doctors who care for women with
salpingitis were more likely to recommend hospital
admission  for those using an intrauterine device (IUD)
than for those using a hormonal method of
contraception.18,19 In a hospital-based case-control study,
this would stack the deck (or gynaecology ward) with a
high proportion of IUD-exposed cases, spuriously
increasing the odds ratio. 

Neyman bias is an incidence-prevalence bias. It arises
when a gap in time occurs between exposure and
selection of study participants. This bias crops up in
studies of diseases that are quickly fatal, transient, or
subclinical. Neyman bias creates a case group not
representative of cases in the community. For example, a
hospital-based case-control study of myocardial
infarction and snow shovelling (the exposure of interest)
would miss individuals who died in their driveways and
thus never reached a hospital; this eventuality might
greatly lower the odds ratio of infarction associated with
this strenuous activity.

Other types of selection bias include unmasking
(detection signal) and non-respondent bias. An exposure
might lead to a search for an outcome, as well as the
outcome itself. For example, oestrogen replacement

therapy might cause symptomless endometrial cancer
patients to bleed, resulting in initiation of diagnostic
tests.20 In this instance, the exposure unmasked the
subclinical cancer, leading to a spurious increase in the
odds ratio. In observational studies, non-respondents are
different from respondents. Cigarette smokers are a case
in point: smokers are less likely to return questionnaires
than are non-smokers or pipe and cigar smokers.21

Information bias
Has information been gathered in the same way?
Information bias, also known as observation, classifi-
cation, or measurement bias, results from incorrect
determination of exposure or outcome, or both. In a
cohort study or randomised controlled trial, information
about outcomes should be obtained the same way for
those exposed and unexposed. In a case-control study,
information about exposure should be gathered in the
same way for cases and controls. 

Information bias can arise in many ways. Some use the
term ascertainment to describe gathering information in
different ways. For example, an investigator might gather
information about an exposure at bedside for a case but
by telephone from a community control. Diagnostic
suspicion bias implies that knowledge of a putative cause
of disease might launch a more intensive search for the
disease among those exposed, for example, preferentially
searching for infection  by HIV-1 in intravenous drug
users. Conversely, the presence of a disease might
prompt a search for the putative exposure of interest.
Another type of bias is family history bias, in which
medical information flows differently to affected and
unaffected family members, as has been shown for
rheumatoid arthritis.22 To minimise information bias,
detail about exposures in case-control studies should be
gathered by people who are unaware of whether the
respondent is a case or a control. Similarly, in a cohort
study with subjective outcomes, the observer should be
unaware of the exposure status of each participant.

In case-control studies that rely on memory of remote
exposures, recall bias is pervasive. Cases tend to search
their memories to identify what might have caused their
disease; healthy controls have no such motivation. Thus,
better recall among cases is common. For example, the
putative association between induced abortion and
subsequent development of breast cancer has emerged as
a hot medical and political issue. Many case-control
studies have reported an increase in cancer risk after
abortion.23 However, when investigators compared
histories of prior abortions, obtained by personal
interview, against centralised medical records, they
documented systematic underreporting of abortions
among controls (but not among cases) that accounted for
a spurious association.24 In Swedish and Danish cohort
studies,25,26 free from recall bias, induced abortion has
had either a protective effect or no effect on risk of breast
cancer.

Is the information bias random or in one direction?
The effect of information bias depends on its type. If
information is gathered differentially for one group than
for another, then bias results, raising or lowering the
relative risk or odds ratio dependent on the direction of
the bias. By contrast, non-differential misclassification—
ie, noise in the system—tends to obscure real differences.
For example, an ambiguous questionnaire might lead to
errors in data collection among cases and controls,
shifting the odds ratio toward unity, meaning no
association.
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Panel 1: What to look for in observational studies

Is selection bias present?
In a cohort study, are participants in the exposed and
unexposed groups similar in all important respects except for
the exposure? 

In a case-control study, are cases and controls similar in all
important respects except for the disease in question?

Is information bias present?
In a cohort study, is information about outcome obtained in
the same way for those exposed and unexposed? 

In a case-control study, is information about exposure
gathered in the same way for cases and controls?

Is confounding present?
Could the results be accounted for by the presence of a
factor—eg, age, smoking, sexual behaviour, diet—associated
with both the exposure and the outcome but not directly
involved in the causal pathway?

If the results cannot be explained by these three biases,
could they be the result of chance?
What are the relative risk or odds ratio and 95% CI?11,12

Is the difference statistically significant, and, if not, did the
study have adequate power to find a clinically important
difference?13,14

If the results still cannot be explained away, then (and only
then) might the findings be real and worthy of note.
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Confounding
Is an extraneous factor blurring the effect?
Confounding is a mixing or blurring of effects. A
researcher attempts to relate an exposure to an outcome,
but actually measures the effect of a third factor, termed
a confounding variable. A confounding variable is
associated with the exposure and it affects the outcome,
but it is not an intermediate link in the chain of causation
between exposure and outcome.27,28 More simply,
confounding is a methodological fly in the ointment.
Confounding is often easier to understand from examples
than from definitions. 

Oral contraceptives and myocardial infarction, and
smoking
Early studies of the safety of oral contraceptives reported
a pronounced increased risk of myocardial infarction.
This association later proved to be spurious, because of
the high proportion of cigarette smokers among users of
birth control pills.29–31 Here, cigarette smoking
confounded the relation between oral contraceptives and
infarction. Women who chose to use birth control pills
also chose, in large numbers, to smoke cigarettes, and
cigarettes, in turn, increased the risk of myocardial
infarction. Although investigators thought they were
measuring an effect of birth control pills, they were in fact
measuring the hidden effect of smoking among pill users. 

IUD insertion and salpingitis, and exposure to sexually
transmitted disease 
Results of a large case-control study of IUDs indicated a
significant increase in salpingitis soon after insertion.32

However, among married or cohabiting women with only
one reported sex partner in the past 6 months, no
significant increase in risk was evident.33 In the study,
exposure to sexually transmitted diseases apparently
confounded the association. Even among women at low
risk of salpingitis, frequent coitus might increase risk of
infection,34 and few studies have controlled for this
variable.

Oral contraceptives and cervical cancer, and smoking
Reported associations between oral contraceptives and
squamous cervical cancer35 might be due to unsuspected
confounding by cigarette smoking and human
papillomavirus infection.36 Control of confounding is
inevitably limited by our meagre understanding of human
biology; unsuspected confounding factors evade control
in observational studies.37

Control for confounding
When selection bias or information bias exist in a study,
irreparable damage results. Internal validity is doomed.
By contrast, when confounding is present, this bias can
be corrected, provided that confounding was anticipated
and the requisite information gathered. Confounding can
be controlled for before or after a study is done. The
purpose of these approaches is to achieve homogeneity
between study groups.

Restriction
The simplest approach is restriction (also called exclusion
or specification).28 For example, if cigarette smoking is
suspected to be a confounding factor, a study can enrol
only non-smokers. Although this tactic avoids
confounding, it also hinders recruitment (and thus
power) and precludes extrapolation to smokers.
Restriction might increase the internal validity of a study
at the cost of poorer external validity.

Matching
Another way to control for confounding is pairwise
matching. In a case-control study in which smoking is
deemed a confounding factor, cases and controls can be
matched by smoking status. For each case who smokes, a
control who smokes is found. This approach, although
often used by investigators, has two drawbacks. If
matching is done on several potential confounding
factors, the recruitment process can be cumbersome,
and, by definition, one cannot examine the effect of a
matched variable.28

Stratification
Investigators can also control for confounding after a
study has been completed. One approach is stratification.
Stratification can be considered a form of post hoc
restriction, done during the analysis rather than during
the accrual phase of a study. For example, results can be
stratified by levels of the confounding factor. In the
smoking example, results are calculated separately for
smokers and non-smokers to see if the same effect arises
independent of smoking. The Mantel-Haenszel
procedure38 combines the various strata into a summary
statistic that describes the effect. The strata are weighted
inversely to their variance—ie, strata with larger numbers
count more than those with smaller numbers. If the
Mantel-Haenszel adjusted effect differs substantially
from the crude effect, then confounding is deemed
present. In this instance, the adjusted estimate of effect is
considered the better estimate to use. 

Confounding is not always intuitive, as shown by the
fictitious example in the figure. In this hypothetical
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When the crude relative risk is controlled for the confounding effect of
number of sexual partners, the raised risk disappears.



For personal use. Only reproduce with permission from The Lancet Publishing Group.

cohort of 2000 women, use of an IUD was strongly
related to development of salpingitis (relative risk 3·0;
95% CI 1·7–5·4). However, the number of sexual
partners was related to women’s choice of contraception
and to their risk of upper-genital-tract infection. Here, a
disproportionate number of women with more than one
sexual partner chose to use an IUD (700 vs 300 women
with only one partner). The number of partners was also
related to the risk of infection (6% among those with 
>1 partner vs 1% among those with only one partner). In
each stratum by number of partners, the relative risk is
1·0, indicating no association between the IUD and
salpingitis. The Mantel-Haenszel weighted relative risk,
which controls for this confounding effect, is 1·0 
(95% CI 0·5–2·0). In this fictitious example, the
apparent three-fold increase in risk associated with IUD
use was all due to confounding bias.

Multivariate techniques
In multivariate techniques, mathematical modelling
examines the potential effect of one variable while
simultaneously controlling for the effect of many other
factors. A major advantage of these approaches is that
they can control for more factors that can stratification.
For example, an investigator might use multivariate
logistic regression to study the effect of oral
contraceptives on ovarian cancer risk. In this way, they
could simultaneously control for age, race, family history,
parity, &c. Another example would be use of a
proportional hazards regression analysis for time to
death; this method could control simultaneously for age,
blood pressure, smoking history, serum lipids, and other
risk factors.39 Disadvantages of multivariate approaches,
for some researchers, include greater difficulty in
understanding the results, and loss of hands-on feel for
the data.28

Chance
If a reader cannot explain results on the basis of selection,
information, or confounding bias, then chance might be
another explanation. The reason for examination of bias
before chance is that biases can easily cause highly
significant (though bogus) results. Regrettably, many
readers use the p value as the arbiter of validity, without
considering these other, more important, factors.

The venerable p value measures chance. It advises the
reader of the likelihood of a false-positive conclusion: a
difference was seen in the study, although it does not
exist in the broader population (type I error). Many
clinicians are surprised to learn, however, that the p value
of 0·05 as a threshold has no basis in medicine. Rather, it
stems from agricultural and industrial experiments early
in the 20th century.40,41 Should a study not achieve
significance at this level, one needs to see if the study had
adequate power to find a clinically important difference.
Many “negative” studies simply have too few participants
to do the job.13,14 Better yet, investigators should present
measures of association with confidence intervals41 in
preference to hypothesis tests.

Judgment of associations
Bogus, indirect, or real?
When statistical associations emerge from clinical
research, the next step is to judge what type of association
exists. Statistical associations do not necessarily imply
causal associations.17 Although several classifications are
available,28 a simple approach includes just three types:
spurious, indirect, and causal. Spurious associations are
the result of selection bias, information bias, and chance.

By contrast, indirect associations (which stem from
confounding) are real but not causal. 

Judgment of cause-effect relations can be tough. Few
rules apply, though criteria first suggested by Hill have
received the most attention (panel 2).17,42,43 The only iron-
clad criterion is temporality: the cause must antedate the
effect. However, in many studies, especially with chronic
diseases, answering this chicken-egg question can be
daunting. Strong associations argue for causation.
Whereas weak associations in observational studies can
easily be due to bias, large amounts of bias would be
necessary to produce strong associations. (This large bias
is evident in reports that link IUD use with salpingitis.)
Some suggest that relative risks more than 3 in cohort
studies, or odds ratios greater than 4 in case-control
studies, provide strong support for causation.44

Consistent observation of an association in different
populations and with different study designs also lends
support to a real effect. For example, results of studies
done around the world have consistently shown that oral
contraceptives protect against ovarian cancer; a causal
relation can, therefore, be argued. Evidence of a
biological gradient supports a causal association too. For
instance, protection against ovarian cancer is directly
related to duration of use of oral contraceptives.45 The
risk of death from lung cancer is linearly related to years
of cigarette smoking. In both of these examples,
increasing exposure is associated with an increasing
biological effect.

Other criteria of Hill’s are less useful. Specificity is a
weak criterion. With a few exceptions, such as the rabies
virus, few exposures lead to only one outcome. Should an
association be highly specific, this provides support for
causality. However, since many exposures—eg, cigarette
smoke—lead to numerous outcomes, lack of specificity
does not argue against causation. Biological plausibility is
another weak criterion, limited by our lack of knowledge.
300 years ago, clinicians would have rejected the
suggestion that citrus fruits could prevent scurvy or that
mosquitoes were linked with blackwater fever. Ancillary
biological evidence that is coherent with the association
might be helpful. For example, the effect of cigarette
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Panel 2: Criteria for judgment of causal
associations17,42,43

Temporal sequence
Did exposure precede outcome?

Strength of association
How strong is the effect, measured as relative risk or odds
ratio?

Consistency of association
Has effect been seen by others?

Biological gradient (dose-response relation)
Does increased exposure result in more of the outcome?

Specificity of association
Does exposure lead only to outcome?

Biological plausibility
Does the association make sense?

Coherence with existing knowledge
Is the association consistent with available evidence?

Experimental evidence
Has a randomised controlled trial been done?

Analogy
Is the association similar to others?
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smoke on the bronchial epithelium of animals is coherent
with an increased risk of cancer in human beings. Finally,
experimental evidence is seldom available, and reasoning
by analogy has sometimes caused harm. Since
thalidomide can cause birth defects, for instance, some
lawyers (successfully) argued by analogy that Bendectin
(an antiemetic widely used for nausea and vomiting in
pregnancy) could also cause birth defects, despite
evidence to the contrary.46

Conclusion
Studies need to have both internal and external validity:
the results should be both correct and capable of
extrapolation to the population. A simple checklist for
bias (selection, information, and confounding) then
chance can help readers decipher research reports. When
a statistical association appears in research, guidelines for
judgment of associations can help a reader decide
whether the association is bogus, indirect, or real. 

We thank Willard Cates and David L Sackett for their helpful comments
on an earlier version of this report. Much of this material stems from our
15 years of teaching the Berlex Foundation Faculty Development Course.
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